Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(4): 2171-2181, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064236

RESUMO

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.


Assuntos
Grelina , Receptores de Grelina , Animais , Animais Geneticamente Modificados , Grelina/farmacologia , Camundongos , Oxicodona , Ratos , Ratos Long-Evans , Ratos Wistar
2.
Br J Pharmacol ; 176(24): 4773-4784, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31454413

RESUMO

BACKGROUND AND PURPOSE: Both types of cannabinoid receptors-CB1 and CB2 -regulate brain functions relating to addictive drug-induced reward and relapse. CB1 receptor antagonists and CB2 receptor agonists have anti-addiction efficacy, in animal models, against a broad range of addictive drugs. Δ9 -Tetrahydrocannabivarin (Δ9 -THCV)-a cannabis constituent-acts as a CB1 antagonist and a CB2 agonist. Δ8 -Tetrahydrocannabivarin (Δ8 -THCV) is a Δ9 -THCV analogue with similar combined CB1 antagonist/CB2 agonist properties. EXPERIMENTAL APPROACH: We tested Δ8 -THCV in seven different rodent models relevant to nicotine dependence-nicotine self-administration, cue-triggered nicotine-seeking behaviour following forced abstinence, nicotine-triggered reinstatement of nicotine-seeking behaviour, acquisition of nicotine-induced conditioned place preference, anxiety-like behaviour induced by nicotine withdrawal, somatic withdrawal signs induced by nicotine withdrawal, and hyperalgesia induced by nicotine withdrawal. KEY RESULTS: Δ8 -THCV significantly attenuated intravenous nicotine self-administration and both cue-induced and nicotine-induced relapse to nicotine-seeking behaviour in rats. Δ8 -THCV also significantly attenuated nicotine-induced conditioned place preference and nicotine withdrawal in mice. CONCLUSIONS AND IMPLICATIONS: We conclude that Δ8 -THCV may have therapeutic potential for the treatment of nicotine dependence. We also suggest that tetrahydrocannabivarins should be tested for possible anti-addiction efficacy in a broader range of preclinical animal models, against other addictive drugs, and eventually in humans.


Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Hiperalgesia/prevenção & controle , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Agentes de Cessação do Hábito de Fumar/farmacologia , Síndrome de Abstinência a Substâncias/prevenção & controle , Tabagismo/prevenção & controle , Animais , Modelos Animais de Doenças , Camundongos , Nicotina/administração & dosagem , Ratos , Autoadministração , Tabagismo/metabolismo
3.
Pharmacol Biochem Behav ; 176: 53-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414405

RESUMO

The dopamine system-essential for mood and movement-can be activated in two ways: by excitatory inputs that cause burst firing and stamp-in learning or by slow excitatory or inhibitory inputs-like leptin, insulin, ghrelin, or corticosterone-that decrease or increase single-spike (pacemaker) firing rate and that modulate motivation. In the present study we monitored blood samples taken prior to and during intravenous cocaine or saline self-administration in rats. During cocaine-taking, growth hormone and acetylated ghrelin increased 10-fold; glucagon-like peptide-1 (GLP-1) doubled; non-acetylated ghrelin, insulin-like growth factor-1 (IGF-1), and corticosterone increased by 50% and adiponectin increased by 17%. In the same blood samples, leptin, insulin, gastric inhibitory polypeptide (GIP), and prolactin decreased by 40-70%. On the first day of testing under extinction conditions-where the animals earned unexpected saline instead of cocaine-5-fold increases were seen for growth hormone and acetylated ghrelin and equal changes-in amplitude and latency-were seen in each of the other cases except for IGF-1 (which increased at a slower rate). Single-spike firing affects the tonic activation level of the dopamine system, involving very different controls than those that drive burst firing; thus, the present data suggest interesting new targets for medications that might be used in the early stages of drug abstinence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/sangue , Cocaína/farmacologia , Substituição de Medicamentos/métodos , Solução Salina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adiponectina/sangue , Animais , Cocaína/administração & dosagem , Corticosterona/sangue , Modelos Animais de Doenças , Polipeptídeo Inibidor Gástrico/sangue , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Hormônio do Crescimento/sangue , Injeções Intravenosas , Insulina/sangue , Leptina/sangue , Prolactina/sangue , Ratos , Recompensa , Solução Salina/administração & dosagem , Autoadministração
4.
Acta Pharmacol Sin ; 40(3): 365-373, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29967454

RESUMO

Cannabinoid CB1 receptors (CB1Rs) have been shown to be a promising target in medication development for the treatment of addiction. However, clinical trials with SR141716A (rimonabant, a selective CB1R antagonist/inverse agonist) for the treatment of obesity and smoking cessation failed due to unwanted side effects, such as depression, anxiety, and suicidal tendencies. Recent preclinical studies suggest that the neutral CB1R antagonist AM4113 may retain the therapeutic anti-addictive effects of SR141716A in nicotine self-administration models and possibly has fewer unwanted side effects. However, little is known about whether AM4113 is also effective for other drugs of abuse, such as opioids and psychostimulants, and whether it produces depressive side effects similar to SR141716A in experimental animals. In this study, we demonstrated that systemic administration of AM4113 (3 and 10 mg/kg) dose-dependently inhibited the self-administration of intravenous heroin but not cocaine or methamphetamine, whereas SR141716A (3 and 10 mg/kg) dose-dependently inhibited the self-administration of heroin and methamphetamine but not cocaine. In the electrical brain-stimulation reward (BSR) paradigm, SR141716A (3 and 10 mg/kg) dose-dependently increased the BSR stimulation threshold (i.e., decreased the stimulation reward), but AM4113 had no effect on BSR at the same doses, suggesting that SR141716A may produce aversive effects while AM4113 may not. Together, these findings show that neutral CB1R antagonists such as AM4113 deserve further research as a new class of CB1R-based medications for the treatment of opioid addiction without SR141716A-like aversive effects.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Depressão/prevenção & controle , Comportamento de Procura de Droga/efeitos dos fármacos , Dependência de Heroína/prevenção & controle , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/efeitos adversos , Condicionamento Operante/efeitos dos fármacos , Heroína/efeitos adversos , Dependência de Heroína/psicologia , Masculino , Metanfetamina/efeitos adversos , Ratos Long-Evans , Recompensa , Rimonabanto/efeitos adversos , Rimonabanto/farmacologia , Autoadministração
5.
Neuropsychopharmacology ; 43(13): 2615-2626, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30283001

RESUMO

Opioid abuse is a rapidly growing public health crisis in the USA. Despite extensive research in the past decades, little is known about the etiology of opioid addiction or the neurobiological risk factors that increase vulnerability to opioid use and abuse. Recent studies suggest that the type 2 metabotropic glutamate receptor (mGluR2) is critically involved in substance abuse and addiction. In the present study, we evaluated whether low-mGluR2 expression may represent a risk factor for the development of opioid abuse and addiction using transgenic mGluR2-knockout (mGluR2-KO) rats. Compared to wild-type controls, mGluR2-KO rats exhibited higher nucleus accumbens (NAc) dopamine (DA) and locomotor responses to heroin, higher heroin self-administration and heroin intake, more potent morphine-induced analgesia and more severe naloxone-precipitated withdrawal symptoms. In contrast, mGluR2-KO rats displayed lower motivation for heroin self-administration under high price progressive-ratio (PR) reinforcement conditions. Taken together, these findings suggest that mGluR2 may play an inhibitory role in opioid action, such that deletion of this receptor results in an increase in brain DA responses to heroin and in acute opioid reward and analgesia. Low-mGluR2 expression in the brain may therefore be a risk factor for the initial development of opioid abuse and addiction.


Assuntos
Deleção de Genes , Dependência de Heroína/metabolismo , Heroína/administração & dosagem , Receptores de Glutamato Metabotrópico/deficiência , Esquema de Reforço , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Dependência de Heroína/genética , Dependência de Heroína/psicologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Transgênicos , Ratos Wistar , Receptores de Glutamato Metabotrópico/genética , Autoadministração
6.
Neuropsychopharmacology ; 40(7): 1762-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25613829

RESUMO

(±)-Modafinil (MOD) is used clinically for the treatment of sleep disorders and has been investigated as a potential medication for the treatment of psychostimulant addiction. However, the therapeutic efficacy of (±)-MOD for addiction is inconclusive. Herein we used animal models of self-administration and in vivo microdialysis to study the pharmacological actions of R-modafinil (R-MOD) and S-modafinil (S-MOD) on nicotine-taking and nicotine-seeking behavior, and mechanisms underlying such actions. We found that R-MOD is more potent and effective than S-MOD in attenuating nicotine self-administration in Long-Evans rats. As Long-Evans rats did not show a robust reinstatement response to nicotine, we used alcohol-preferring rats (P-rats) that display much higher reinstatement responses to nicotine than Long-Evans rats. We found that R-MOD significantly inhibited intravenous nicotine self-administration, nicotine-induced reinstatement, and nicotine-associated cue-induced drug-seeking behavior in P-rats. R-MOD alone neither sustained self-administration in P-rats previously self-administering nicotine nor reinstated extinguished nicotine-seeking behavior. The in vivo brain microdialysis assays demonstrated that R-MOD alone produced a slow-onset moderate increase in extracellular DA. Pretreatment with R-MOD dose-dependently blocked nicotine-induced dopamine (DA) release in the nucleus accumbens (NAc) in both naive and nicotine self-administrating rats, suggesting a DA-dependent mechanism underlying mitigation of nicotine's effects. In conclusion, the present findings support further investigation of R-MOD for treatment of nicotine dependence in humans.


Assuntos
Álcoois/administração & dosagem , Compostos Benzidrílicos/uso terapêutico , Comportamento de Procura de Droga/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Tabagismo/tratamento farmacológico , Promotores da Vigília/uso terapêutico , Administração Oral , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Extinção Psicológica/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Masculino , Modafinila , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans , Esquema de Reforço , Autoadministração
7.
Acta Pharmacol Sin ; 30(6): 723-39, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19434058

RESUMO

Tobacco use is a global problem with serious health consequences. Though some treatment options exist, there remains a great need for new effective pharmacotherapies to aid smokers in maintaining long-term abstinence. In the present article, we first discuss the neural mechanisms underlying nicotine reward, and then review various mechanism-based pharmacological agents for the treatment of nicotine dependence. An oversimplified hypothesis of addiction to tobacco is that nicotine is the major addictive component of tobacco. Nicotine binds to alpha4beta2 and alpha7 nicotinic acetylcholine receptors (nAChRs) located on dopaminergic, glutamatergic and GABAergic neurons in the mesolimbic dopamine (DA) system, which causes an increase in extracellular DA in the nucleus accumbens (NAc). That increase in DA reinforces tobacco use, particularly during the acquisition phase. Enhanced glutamate transmission to DA neurons in the ventral tegmental area appears to play an important role in this process. In addition, chronic nicotine treatment increases endocannabinoid levels in the mesolimbic DA system, which indirectly modulates NAc DA release and nicotine reward. Accordingly, pharmacological agents that target brain acetylcholine, DA, glutamate, GABA, or endocannabonoid signaling systems have been proposed to interrupt nicotine action. Furthermore, pharmacokinetic strategies that alter plasma nicotine availability, metabolism and clearance also significantly alter nicotine's action in the brain. Progress using these pharmacodynamic and pharmacokinetic agents is reviewed. For drugs in each category, we discuss the mechanistic rationale for their potential anti-nicotine efficacy, major findings in preclinical and clinical studies, and future research directions.


Assuntos
Sistemas de Liberação de Medicamentos , Nicotina/efeitos adversos , Tabagismo/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ensaios Clínicos como Assunto , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Nicotina/farmacocinética , Nicotina/farmacologia , Agonistas Nicotínicos/efeitos adversos , Agonistas Nicotínicos/farmacocinética , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Tabagismo/fisiopatologia
8.
Neuropharmacology ; 57(1): 60-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19393252

RESUMO

Varenicline, a partial alpha4beta2 and full alpha7 nicotinic receptor agonist, has been shown to inhibit nicotine self-administration and nicotine-induced increases in extracellular dopamine in the nucleus accumbens. In the present study, we investigated whether varenicline inhibits nicotine-enhanced electrical brain-stimulation reward (BSR), and if so, which receptor subtypes are involved. Systemic administration of nicotine (0.25-1.0 mg/kg, i.p.) or varenicline (0.03-3 mg/kg, i.p.) produced biphasic effects, with low doses producing enhancement (e.g., decreased BSR threshold), and high doses inhibiting BSR. Pretreatment with low dose (0.03-1.0 mg/kg) varenicline dose-dependently attenuated nicotine (0.25 or 0.5 mg/kg)-enhanced BSR. The BSR-enhancing effect produced by varenicline was blocked by mecamylamine (a high affinity nicotinic receptor antagonist) or dihydro-beta-erythroidine (a relatively selective nicotinic alpha4-containing receptor antagonist), but not methyllycaconitine (a selective alpha7 receptor antagonist), suggesting an effect mediated by activation of alpha4beta2 receptors. This suggestion is supported by findings that the alpha4beta2 receptor agonist SIB-1765F produced a dose-dependent enhancement of BSR, while pretreatment with SIB-1765F attenuated nicotine (0.5 mg/kg)-enhanced BSR. In contrast, the selective alpha7 receptor agonist ARR-17779, altered neither BSR itself nor nicotine-enhanced BSR, at any dose tested. These findings suggest that: 1) varenicline inhibits nicotine-enhanced BSR, supporting its use as a smoking cessation aid; and 2) varenicline-enhanced BSR by itself and varenicline's anti-nicotine effects are mediated by activation of alpha4beta2, but not alpha7, receptors.


Assuntos
Benzazepinas/farmacologia , Condicionamento Operante/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Quinoxalinas/farmacologia , Receptores Nicotínicos/metabolismo , Recompensa , Animais , Condicionamento Operante/fisiologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Masculino , Feixe Prosencefálico Mediano/efeitos dos fármacos , Feixe Prosencefálico Mediano/fisiologia , Antagonistas Nicotínicos/farmacologia , Ratos , Ratos Long-Evans , Vareniclina
9.
Int J Neuropsychopharmacol ; 9(5): 585-602, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16942635

RESUMO

Increasing evidence suggests that enhanced dopamine (DA) neurotransmission in the nucleus accumbens (NAc) may play a role in mediating the reward and reinforcement produced by addictive drugs and in the attentional processing of drug-associated environmental cues. The meso-accumbens DA system is selectively enriched with DA D3 receptors, a DA receptor subtype increasingly implicated in reward-related brain and behavioural processes. From a variety of evidence, it has been suggested that selective DA D3 receptor antagonism may be a useful pharmacotherapeutic approach for treating addiction. The present experiments tested the efficacy of SB-277011A, a selective DA D3 receptor antagonist, in rat models of nicotine-enhanced electrical brain-stimulation reward (BSR), nicotine-induced conditioned locomotor activity (LMA), and nicotine-induced conditioned place preference (CPP). Nicotine was given subcutaneously within the dose range of 0.25-0.6 mg/kg (nicotine-free base). SB-277011A, given intraperitoneally within the dose range of 1-12 mg/kg, dose-dependently reduced nicotine-enhanced BSR, nicotine-induced conditioned LMA, and nicotine-induced CPP. The results suggest that selective D3 receptor antagonism constitutes a new and promising pharmacotherapeutic approach to the treatment of nicotine dependence.


Assuntos
Encéfalo/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Nitrilas/farmacologia , Recompensa , Tetra-Hidroisoquinolinas/farmacologia , Análise de Variância , Animais , Área Sob a Curva , Aprendizagem por Associação/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans
10.
Neuroimage ; 22(3): 1328-35, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15219605

RESUMO

Thirty male Sprague-Dawley rats were divided into two groups and trained to self-administer either saline (n = 14) or heroin (0.1 mg/kg per injection, n = 16) for 10-12 days until a stable self-administration (SA) behavior was achieved. After 8-9 days of withdrawal, each group was divided into two subgroups for reinstatement tests and functional magnetic resonance image (fMRI) scanning, respectively, to determine the neural correlates of the reinstatement of heroin-seeking behavior. For reinstatement testing, heroin-SA rats (n = 10) displayed robust reinstatement of drug-seeking behavior triggered by an acute heroin priming injection, whereas saline control rats (n = 8) did not show such a behavioral response. Regional positive or negative blood oxygen level-dependent (BOLD) signals, induced by heroin priming injection, were observed in both groups of rats during fMRI scanning. However, such heroin-induced positive BOLD signal primarily in the prefrontal cortex and parietal cortex was significantly attenuated in heroin-SA rats (n = 6) when compared to saline control rats (n = 6). Similarly, the heroin-induced negative BOLD signal in the subcortical regions, such as in the nucleus accumbens and hippocampus, was also significantly attenuated in both signal intensity and number of brain voxels activated in heroin-SA rats. These data demonstrate that heroin-induced reinstatement of drug-seeking behavior coincides with a significant, enduring reduction in opiate-induced brain activity in heroin-SA rats, suggesting a possible role of opiate tolerance in mediating reinstatement of drug-seeking behavior.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Tolerância a Medicamentos , Dependência de Heroína/fisiopatologia , Heroína/administração & dosagem , Imageamento por Ressonância Magnética , Animais , Circulação Cerebrovascular , Hipocampo/irrigação sanguínea , Injeções Intravenosas , Masculino , Núcleo Accumbens/irrigação sanguínea , Oxigênio/sangue , Lobo Parietal/irrigação sanguínea , Córtex Pré-Frontal/irrigação sanguínea , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração
12.
Synapse ; 44(2): 61-3, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11891877

RESUMO

We examined the effect of 1R,4S-4-amino-cyclopent-2-ene-carboxylic acid (ACC), a reversible inhibitor of GABA transaminase, on the expression of conditioned place preference response to cocaine and nicotine in rats. Cocaine (20 mg/kg i.p.) and nicotine (0.4 mg/kg s.c.), but not vehicle or 300 mg/kg i.p. of ACC, produced a significant conditioned place preference response. Pretreatment of animals with 300 and 75 mg/kg i.p. of ACC significantly attenuated the expression of the cocaine- and nicotine-induced conditioned place preference responses, respectively. These results are the first to suggest that reversible inhibition of GABA transaminase may be useful in blocking cue-induced relapse to nicotine and cocaine.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Cocaína/antagonistas & inibidores , Condicionamento Operante/efeitos dos fármacos , Ciclopentanos/administração & dosagem , Nicotina/antagonistas & inibidores , Animais , Injeções Intraperitoneais , Injeções Subcutâneas , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA