Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 83(1): 39-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312960

RESUMO

After transmission by Anopheles mosquitoes, Plasmodium sporozoites travel to the liver, infect hepatocytes, and rapidly develop as intrahepatocytic liver stages (LS). Rodent models of malaria exhibit large differences in the magnitude of liver infection, both between parasite species and between strains of mice. This has been mainly attributed to differences in innate immune responses and parasite infectivity. Here, we report that BALB/cByJ mice are more susceptible to Plasmodium yoelii preerythrocytic infection than BALB/cJ mice. This difference occurs at the level of early hepatocyte infection, but expression levels of reported host factors that are involved in infection do not correlate with susceptibility. Interestingly, BALB/cByJ hepatocytes are more frequently polyploid; thus, their susceptibility converges on the previously observed preference of sporozoites to infect polyploid hepatocytes. Gene expression analysis demonstrates hepatocyte-specific differences in mRNA abundance for numerous genes between BALB/cByJ and BALB/cJ mice, some of which encode hepatocyte surface molecules. These data suggest that a yet-unknown receptor for sporozoite infection, present at elevated levels on BALB/cByJ hepatocytes and also polyploid hepatocytes, might facilitate Plasmodium liver infection.


Assuntos
Suscetibilidade a Doenças , Endocitose , Hepatócitos/parasitologia , Malária/imunologia , Malária/parasitologia , Plasmodium yoelii/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos Endogâmicos BALB C
2.
Infect Immun ; 81(11): 4171-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980113

RESUMO

Vaccination with a single dose of genetically attenuated malaria parasites can induce sterile protection against sporozoite challenge in the rodent Plasmodium yoelii model. Protection is dependent on CD8(+) T cells, involves perforin and gamma interferon (IFN-γ), and is correlated with the expansion of effector memory CD8(+) T cells in the liver. Here, we have further characterized vaccine-induced changes in the CD8(+) T cell phenotype and demonstrated significant upregulation of CD11c on CD3(+) CD8b(+) T cells in the liver, spleen, and peripheral blood. CD11c(+) CD8(+) T cells are predominantly CD11a(hi) CD44(hi) CD62L(-), indicative of antigen-experienced effector cells. Following in vitro restimulation with malaria-infected hepatocytes, CD11c(+) CD8(+) T cells expressed inflammatory cytokines and cytotoxicity markers, including IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), perforin, and CD107a. CD11c(-) CD8(+) T cells, on the other hand, expressed negligible amounts of all inflammatory cytokines and cytotoxicity markers tested, indicating that CD11c marks multifunctional effector CD8(+) T cells. Coculture of CD11c(+), but not CD11c(-), CD8(+) T cells with sporozoite-infected primary hepatocytes significantly inhibited liver-stage parasite development. Tetramer staining for the immunodominant circumsporozoite protein (CSP)-specific CD8(+) T cell epitope demonstrated that approximately two-thirds of CSP-specific cells expressed CD11c at the peak of the CD11c(+) CD8(+) T cell response, but CD11c expression was lost as the CD8(+) T cells entered the memory phase. Further analyses showed that CD11c(+) CD8(+) T cells are primarily KLRG1(+) CD127(-) terminal effectors, whereas all KLRG1(-) CD127(+) memory precursor effector cells are CD11c(-) CD8(+) T cells. Together, these results suggest that CD11c marks a subset of highly inflammatory, short-lived, antigen-specific effector cells, which may play an important role in eliminating infected hepatocytes.


Assuntos
Antígeno CD11c/biossíntese , Linfócitos T CD8-Positivos/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium yoelii/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Sangue/imunologia , Linfócitos T CD8-Positivos/química , Feminino , Imunofenotipagem , Fígado/imunologia , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Baço/imunologia , Subpopulações de Linfócitos T/química , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
3.
Eukaryot Cell ; 10(11): 1422-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926333

RESUMO

Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.


Assuntos
Íntrons/genética , Plasmodium falciparum/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Sequência de Bases , Plasmodium falciparum/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 103(9): 3286-91, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16492763

RESUMO

East Coast fever, caused by the tick-borne intracellular apicomplexan parasite Theileria parva, is a highly fatal lymphoproliferative disease of cattle. The pathogenic schizont-induced lymphocyte transformation is a unique cancer-like condition that is reversible with parasite removal. Schizont-infected cell-directed CD8(+) cytotoxic T lymphocytes (CTL) constitute the dominant protective bovine immune response after a single exposure to infection. However, the schizont antigens targeted by T. parva-specific CTL are undefined. Here we show the identification of five candidate vaccine antigens that are the targets of MHC class I-restricted CD8(+) CTL from immune cattle. CD8(+) T cell responses to these antigens were boosted in T. parva-immune cattle resolving a challenge infection and, when used to immunize naïve cattle, induced CTL responses that significantly correlated with survival from a lethal parasite challenge. These data provide a basis for developing a CTL-targeted anti-East Coast fever subunit vaccine. In addition, orthologs of these antigens may be vaccine targets for other apicomplexan parasites.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Linfócitos T Citotóxicos/imunologia , Theileria parva/imunologia , Theileriose/imunologia , Animais , Bovinos , Linhagem Celular , Theileriose/parasitologia , Theileriose/patologia , Vacinação
5.
Mol Biochem Parasitol ; 123(2): 85-94, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12270624

RESUMO

The genome of the malaria parasite, Plasmodium falciparum, appears to contain the proteins necessary for a Type II dissociated fatty acid biosynthetic system. Here we report the functional characterization of two proteins from this system. Purified recombinant acyl carrier protein (ACP) and beta-ketoacyl-ACP synthase III (KASIII) from P. falciparum are soluble and active in a truncated form. Malarial ACP is activated by the addition of a 4'-phosphopantetheine prosthetic group derived from coenzyme A, generating holo-PfACP. Holo-PfACP is an effective substrate for the transacylase activity of PfKASIII, but substitution of a key active site cysteine in PfKASIII to alanine or serine abolishes enzymatic activity. During the schizont stage of parasite development, there is a significant up-regulation of the mRNAs corresponding to these proteins, indicating an important metabolic requirement for fatty acids during this stage.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Proteína de Transporte de Acila/metabolismo , Panteteína/análogos & derivados , Plasmodium falciparum/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Proteína de Transporte de Acila/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Clonagem Molecular , Ácido Graxo Sintases/genética , Ácidos Graxos/biossíntese , Holoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , Panteteína/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA