Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 56(15): 2252-2266.e6, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343476

RESUMO

In the failing heart, the cardiac myocyte microtubule network is remodeled, which contributes to cellular contractile failure and patient death. However, the origins of this deleterious cytoskeletal reorganization are unknown. We now find that oxidative stress, a condition characteristic of heart failure, leads to cysteine oxidation of microtubules. Our electron and fluorescence microscopy experiments revealed regions of structural damage within the microtubule lattice that occurred at locations of oxidized tubulin. The incorporation of GTP-tubulin into these damaged, oxidized regions led to stabilized "hot spots" within the microtubule lattice, which suppressed the shortening of dynamic microtubules. Thus, oxidative stress may act inside of cardiac myocytes to facilitate a pathogenic shift from a sparse microtubule network into a dense, aligned network. Our results demonstrate how a disease condition characterized by oxidative stress can trigger a molecular oxidation event, which likely contributes to a toxic cellular-scale transformation of the cardiac myocyte microtubule network.


Assuntos
Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Linhagem Celular , Cisteína/metabolismo , Citoesqueleto/fisiologia , Guanosina Trifosfato/metabolismo , Insuficiência Cardíaca/metabolismo , Microscopia de Fluorescência , Microtúbulos/fisiologia , Miócitos Cardíacos/fisiologia , Oxirredução , Ratos , Tubulina (Proteína)/metabolismo
2.
J Cell Sci ; 134(1)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33262310

RESUMO

In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos , Animais , Humanos , Chaperonas Moleculares , Miosina Tipo II/genética , Miosinas , Ratos
3.
Nat Commun ; 10(1): 1761, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988289

RESUMO

During mitosis, tension develops across the centromere as a result of spindle-based forces. Metaphase tension may be critical in preventing mitotic chromosome segregation errors, however, the nature of force transmission at the centromere and the role of centromere mechanics in controlling metaphase tension remains unknown. We combined quantitative, biophysical microscopy with computational analysis to elucidate the mechanics of the centromere in unperturbed, mitotic human cells. We discovered that the mechanical stiffness of the human centromere matures during mitotic progression, which leads to amplified centromere tension specifically at metaphase. Centromere mechanical maturation is disrupted across multiple aneuploid cell lines, leading to a weak metaphase tension signal. Further, increasing deficiencies in centromere mechanical maturation are correlated with rising frequencies of lagging, merotelic chromosomes in anaphase, leading to segregation defects at telophase. Thus, we reveal a centromere maturation process that may be critical to the fidelity of chromosome segregation during mitosis.


Assuntos
Centrômero/fisiologia , Segregação de Cromossomos/fisiologia , Mitose/fisiologia , Aneuploidia , Linhagem Celular Tumoral , Células HeLa , Humanos , Metáfase , Modelos Biológicos , Fuso Acromático
4.
J Cell Biol ; 213(6): 651-64, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27325791

RESUMO

Faithful chromosome segregation depends on the precise timing of chromatid separation, which is enforced by checkpoint signals generated at kinetochores. Here, we provide evidence that the C-terminal domain (CTD) of DNA topoisomerase IIα (Topo II) provides a novel function at inner centromeres of kinetochores in mitosis. We find that the yeast CTD is required for recruitment of the tension checkpoint kinase Ipl1/Aurora B to inner centromeres in metaphase but is not required in interphase. Conserved CTD SUMOylation sites are required for Ipl1 recruitment. This inner-centromere CTD function is distinct from the catalytic activity of Topo II. Genetic and biochemical evidence suggests that Topo II recruits Ipl1 via the Haspin-histone H3 threonine 3 phosphorylation pathway. Finally, Topo II and Sgo1 are equally important for Ipl1 recruitment to inner centromeres. This indicates H3 T3-Phos/H2A T120-Phos is a universal epigenetic signature that defines the eukaryotic inner centromere and provides the binding site for Ipl1/Aurora B.


Assuntos
Antígenos de Neoplasias/metabolismo , Aurora Quinase B/metabolismo , Centrômero/metabolismo , Centrômero/fisiologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metáfase/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Sumoilação/fisiologia , Leveduras/metabolismo , Leveduras/fisiologia
5.
Biotechnol Bioeng ; 113(11): 2328-41, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27144954

RESUMO

Yeast surface display has proven to be an effective tool in the discovery and evolution of ligands with new or improved binding activity. Selections for binding activity are generally carried out using immobilized or fluorescently labeled soluble domains of target molecules such as recombinant ectodomain fragments. While this method typically provides ligands with high affinity and specificity for the soluble molecular target, translation to binding true membrane-bound cellular target is commonly problematic. Direct selections against mammalian cell surfaces can be carried out either exclusively or in combination with soluble target-based selections to further direct towards ligands for genuine cellular target. Using a series of fibronectin domain, affibody, and Gp2 ligands and human cell lines expressing a range of their targets, epidermal growth factor receptor and carcinoembryonic antigen, this study quantitatively identifies the elements that dictate ligand enrichment and yield. Most notably, extended flexible linkers between ligand and yeast enhance enrichment ratios from 1.4 ± 0.8 to 62 ± 57 for a low-affinity (>600 nM) binder on cells with high target expression and from 14 ± 13 to 74 ± 25 for a high-affinity binder (2 nM) on cells with medium valency. Inversion of the yeast display fusion from C-terminal display to N-terminal display still enables enrichment albeit with 40-97% reduced efficacy. Collectively, this study further enlightens the conditions-while highlighting new approaches-that yield successful enrichment of yeast-displayed binding ligands via panning on mammalian cells. Biotechnol. Bioeng. 2016;113: 2328-2341. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/genética , Evolução Molecular Direcionada/métodos , Proteínas Fúngicas/genética , Engenharia de Proteínas/métodos , Mapeamento de Interação de Proteínas/métodos , Saccharomyces cerevisiae/genética , Linhagem Celular Tumoral , Humanos , Biblioteca de Peptídeos
6.
Mol Biol Cell ; 24(18): 2807-19, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23885115

RESUMO

The establishment and maintenance of higher-order structure at centromeres is essential for accurate chromosome segregation. The monopolin complex is thought to cross-link multiple kinetochore complexes to prevent merotelic attachments that result in chromosome missegregation. This model is based on structural analysis and the requirement that monopolin execute mitotic and meiotic chromosome segregation in Schizosaccharomyces pombe, which has more than one kinetochore-microtubule attachment/centromere, and co-orient sister chromatids in meiosis I in Saccharomyces cerevisiae. Recent data from S. pombe suggest an alternative possibility: that the recruitment of condensin is the primary function of monopolin. Here we test these models using the yeast Candida albicans. C. albicans cells lacking monopolin exhibit defects in chromosome segregation, increased distance between centromeres, and decreased stability of several types of repeat DNA. Of note, changing kinetochore-microtubule copy number from one to more than one kinetochore-microtubule/centromere does not alter the requirement for monopolin. Furthermore, monopolin recruits condensin to C. albicans centromeres, and overexpression of condensin suppresses chromosome segregation defects in strains lacking monopolin. We propose that the key function of monopolin is to recruit condensin in order to promote the assembly of higher-order structure at centromere and repetitive DNA.


Assuntos
Adenosina Trifosfatases/metabolismo , Candida albicans/metabolismo , Centrômero/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Candida albicans/citologia , Candida albicans/genética , Ciclo Celular , Segregação de Cromossomos/genética , Cromossomos Fúngicos/metabolismo , DNA Fúngico/genética , DNA Ribossômico/genética , Deleção de Genes , Genoma Fúngico , Cinetocoros/metabolismo , Metáfase , Microtúbulos/metabolismo , Modelos Biológicos , Transporte Proteico , Fuso Acromático/metabolismo
7.
Cell Mol Bioeng ; 6(4): 406-417, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24563677

RESUMO

The chemotherapy drug Cisplatin (cis-diamminedichloroplatinum(II)) induces crosslinks within and between DNA strands, and between DNA and nearby proteins. Therefore, Cisplatin-treated cells which progress into cell division may do so with altered chromosome mechanical properties. This could have important consequences for the successful completion of mitosis. Using Total Internal Reflection Fluorescence (TIRF) microscopy of live Cisplatin-treated Saccharomyces cerevisiae cells, we found that metaphase mitotic spindles have disorganized kinetochores relative to untreated cells, and also that there is increased variability in the chromosome stretching distance between sister centromeres. This suggests that chromosome stiffness may become more variable after Cisplatin treatment. We explored the effect of variable chromosome stiffness during mitosis using a stochastic model in which kinetochore microtubule dynamics were regulated by tension imparted by stretched sister chromosomes. Consistent with experimental results, increased variability of chromosome stiffness in the model led to disorganization of kinetochores in simulated metaphase mitotic spindles. Furthermore, the variability in simulated chromosome stretching tension was increased as chromosome stiffness became more variable. Because proper chromosome stretching tension may serve as a signal that is required for proper progression through mitosis, tension variability could act to impair this signal and thus prevent proper mitotic progression. Our results suggest a possible mitotic mode of action for the anti-cancer drug Cisplatin.

8.
Curr Biol ; 22(7): 632-7, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22445300

RESUMO

Microtubules undergo alternating periods of growth and shortening, known as dynamic instability. These dynamics allow microtubule plus ends to explore cellular space. The "search and capture" model posits that selective anchoring of microtubule plus ends at the cell cortex may contribute to cell polarization, spindle orientation, or targeted trafficking to specific cellular domains. Whereas cytoplasmic dynein is primarily known as a minus-end-directed microtubule motor for organelle transport, cortically localized dynein has been shown to capture and tether microtubules at the cell periphery in both dividing and interphase cells. To explore the mechanism involved, we developed a minimal in vitro system, with dynein-bound beads positioned near microtubule plus ends using an optical trap. Dynein induced a significant reduction in the lateral diffusion of microtubule ends, distinct from the effects of other microtubule-associated proteins such as kinesin-1 and EB1. In assays with dynamic microtubules, dynein delayed barrier-induced catastrophe of microtubules. This effect was ATP dependent, indicating that dynein motor activity was required. Computational modeling suggests that dynein delays catastrophe by exerting tension on individual protofilaments, leading to microtubule stabilization. Thus, dynein-mediated capture and tethering of microtubules at the cortex can lead to enhanced stability of dynamic plus ends.


Assuntos
Dineínas/metabolismo , Microtúbulos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Bovinos , Biologia Computacional , Citoplasma/metabolismo , Escherichia coli/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo
9.
Cell Mol Bioeng ; 4(2): 192-204, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23002398

RESUMO

Microtubules (MTs) are central to fundamental cellular processes including mitosis, polarization, and axon extension. A key issue is to understand how MT-associated proteins and therapeutic drugs, such as the anticancer drug paclitaxel, control MT self-assembly. To facilitate this research, it would be helpful to have automated methods that track the tip of dynamically assembling MTs as observed via fluorescence microscopy. Through a combination of digital fluorescence imaging with MT modeling, model-convolution, and automated image analysis of live and fixed MTs, we developed a method for MT tip tracking that includes estimation of the measurement error. We found that the typical single-frame tip tracking accuracy of GFP-tubulin labeled MTs in living LLC-PK1α cells imaged with a standard widefield epifluorescence digital microscope system is ~36 nm, the equivalent of ~4.5 tubulin dimer layers. However, if the MT tips are blunt, the tip tracking accuracy can be as accurate as ~15 nm (~2 dimer layers). By fitting a Gaussian survival function to the MT tip intensity profiles, we also established that MTs within living cells are not all blunt, but instead exhibit highly variable tapered tip structures with a protofilament length standard deviation of ~180 nm. More generally, the tip tracking method can be extended to track the tips of any individual fluorescently labeled filament, and can estimate filament tip structures both in vivo and in vitro with single-frame accuracy on the nanoscale.

10.
Cell ; 135(5): 894-906, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041752

RESUMO

During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.


Assuntos
Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Motores Moleculares , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA