Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(38): 23329-23335, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-31611402

RESUMO

The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.


Assuntos
Epigenômica/métodos , Células Epiteliais/metabolismo , Mucosa Bucal/citologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Mucosa Bucal/metabolismo , Adulto Jovem
2.
Psychoneuroendocrinology ; 103: 156-162, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690225

RESUMO

Maternal behavior (MB) is observable across mammals and represents an important feature of environmental variation during early postnatal development. Oxytocin (OT) plays a crucial role in MB. Even prior to childbirth, pregnancy induces epigenetic and other downstream changes in the maternal OT-system, likely mediated by the actions of steroid hormones. However, little is known about the nature and consequences of epigenetic modifications in the maternal OT-encoding gene (OXT) during pregnancy. Our study aims to investigate temporal dynamics of OXT promoter DNA methylation (DNAm) throughout pregnancy in predicting MB in humans. In 107 mother-child dyads, maternal OXT DNAm was serially analyzed in whole blood in early, mid and late pregnancy. MB was coded based on standardized mother-child interactions at six months postpartum. After controlling for cellular heterogeneity, race/ethnicity, age, and socioeconomic status, OXT-promoter DNAm exhibited a dynamic profile during pregnancy (b = 0.026, t=-3.37, p < .001), with decreases in DNAm from early to mid-pregnancy and no further change until late pregnancy. Moreover, dynamic DNAm trajectories of the OXT-promoter region predicted MB (intrusiveness) at six months postpartum (b = 0.006, t = 2.0, p < 0.05), with 6% higher OXT DNAm in late pregnancy in intrusive compared to non-intrusive mothers. We here demonstrate that OXT promoter DNAm changes significantly throughout gestation in peripheral blood and that these changes are associated with variability in MB, providing a novel potential biomarker predicting postnatal MB.


Assuntos
Metilação de DNA , Comportamento Materno/fisiologia , Ocitocina/genética , Adulto , Depressão Pós-Parto/sangue , Depressão Pós-Parto/genética , Epigênese Genética , Feminino , Humanos , Recém-Nascido , Masculino , Relações Mãe-Filho/psicologia , Ocitocina/metabolismo , Período Pós-Parto/genética , Gravidez , Regiões Promotoras Genéticas , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
3.
Oncotarget ; 6(2): 604-16, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25436982

RESUMO

While high doses of estrogen, in combination with androgens, can initiate prostate cancer (PCa) via activation of the estrogen receptor α (ERα), the role of ERα in PCa cells within established tumors is largely unknown. Here we show that expression of ERα is increased in high grade human PCa. Similarly, ERα is elevated in mouse models of aggressive PCa driven by MYC overexpression or deletion of PTEN. Within the prostate of PTEN-deficient mice, there is a progressive pattern of ERα expression: low in benign glands, moderate in tumors within the dorsal, lateral and ventral lobes, and high in tumors within the anterior prostate. This expression significantly correlates with the proliferation marker Ki67. Furthermore, in vitro knockdown of ERα in cells derived from PTEN-deficient tumors causes a significant and sustained decrease in proliferation. Depletion of ERα also reduces the activity of the PI3K and MAPK pathways, both downstream targets of non-genomic ERα action. Finally, ERα knockdown reduces the levels of the MYC protein and lowers the sensitivity of cellular proliferation to glucose withdrawal, which correlates with decreased expression of the glucose transporter GLUT1. Collectively, these results demonstrate that ERα orchestrates proliferation and metabolism to promote the neoplastic growth of PCa cells.


Assuntos
Receptor alfa de Estrogênio/biossíntese , PTEN Fosfo-Hidrolase/deficiência , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Receptor alfa de Estrogênio/genética , Técnicas de Silenciamento de Genes , Genes myc , Glucose/metabolismo , Glucose/farmacologia , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA