Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 277: 116337, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640798

RESUMO

The intricate architecture of the intestinal epithelium, crucial for nutrient absorption, is constantly threatened by environmental factors. The epithelium undergoes rapid turnover, which is essential for maintaining homeostasis, under the control of intestinal stem cells (ISCs). The central regulator, Wnt/ß-catenin signaling plays a key role in intestinal integrity and turnover. Despite its significance, the impact of environmental factors on this pathway has been largely overlooked. This study, for the first time, investigates the influence of Cd on the intestinal Wnt signaling pathway using a mouse model. In this study, male BALB/c mice were administered an environmentally relevant Cd dose (0.98 mg/kg) through oral gavage to investigate the intestinal disruption and Wnt signaling pathway. Various studies, including histopathology, immunohistochemistry, RT-PCR, western blotting, ELISA, intestinal permeability assay, and flow cytometry, were conducted to study Cd-induced changes in the intestine. The canonical Wnt signaling pathway experienced significant downregulation as a result of sub-chronic Cd exposure, which caused extensive damage throughout the small intestine. Increased intestinal permeability and a skewed immune response were also observed. To confirm that Wnt signaling downregulation is the key driver of Cd-induced gastrointestinal toxicity, mice were co-exposed to LiCl (a recognized Wnt activator) and Cd. The results clearly showed that the harmful effects of Cd could be reversed, which is strong evidence that Cd mostly damages the intestine through the Wnt/ß-catenin signalling axis. In conclusion, this research advances the current understanding of the role of Wnt/ß catenin signaling in gastrointestinal toxicity caused by diverse environmental pollutants.


Assuntos
Cádmio , Mucosa Intestinal , Via de Sinalização Wnt , Animais , Masculino , Camundongos , beta Catenina/metabolismo , Cádmio/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos Endogâmicos BALB C , Via de Sinalização Wnt/efeitos dos fármacos
2.
Future Med Chem ; 15(18): 1669-1685, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37732405

RESUMO

Background: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of transcription and expression. HDAC1 overexpression is seen in many cancers. Methodology: The authors synthesized and evaluated 27 novel coumarin-based amide derivatives for HDAC1 inhibitory activity. The compounds were screened at the US National Cancer Institute, and 5k and 5u were selected for five-dose assays. Compound 5k showed GI50 values of 0.294 and 0.264 µM against MOLT-4 and LOX-IMVI, respectively; whereas 5u had GI50 values of 0.189 and 0.263 µM, respectively. Both derivatives showed better activity than entinostat and suberoylanilide hydroxamic acid. Compound 5k exhibited an IC50 value of 1.00 µM on ACHN cells. Conclusion: Coumarin derivatives exhibited promising HDAC1 inhibitory potential and warrant future development as anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Amidas/farmacologia , Cumarínicos/farmacologia , Epigênese Genética , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Proliferação de Células , Ácidos Hidroxâmicos/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico
3.
J Biomol Struct Dyn ; 41(22): 13466-13487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36856061

RESUMO

A series of novel 5-chloro-6-methylaurone derivatives (6a-p) were synthesized and characterized by various spectroscopic techniques. The synthesized compounds were tested for anticancer activity against 60-human cancer cell line panel derived from nine cancer types at NCI, Bethesda, USA. Among the synthesized compounds, six compounds (6e, 6f, 6h, 6i, 6k and 6 m) exhibited growth inhibition and cytotoxic activity against various human cancer cell lines in one-dose data. The most potent compound among the series, 6i was active against 55 out of 60 human cancer cell lines. Compound 6i showed remarkable % growth inhibition and cytotoxicity against various cancer cell lines exhibiting % GI in the range 36.05-199.03. The compound 6i was further evaluated for five dose assay and exhibited GI50 1.90 µM and 2.70 µM against melanoma and breast cancer cell lines respectively. Further evaluation of 6i for five-dose assay exhibited a diverse spectrum of anti-cancer activity towards all the 60 human cancer cell line panel with the selectivity index ratio ranging 0.854-1.42 and 0.66-1.35 for GI50 and TGI respectively. Based on one-dose and five-dose data compound 6i was further evaluated for cell apoptosis against MDA-MB-468 breast cancer cell line and was found to induce early apoptosis in cells explaining its mode of action. The in-silico studies for the synthesized compounds as LSD1 inhibitors (2H94) have shown better docking score and binding energy comparable to vafidemstat. All the compounds followed Lipinski rule of five. These findings concluded that the compound 6i could lead to the development of a promising therapeutic anticancer agent.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/química , Estrutura Molecular
4.
Bioorg Chem ; 126: 105885, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636128

RESUMO

A series of novel cyanopyrimidine-hydrazone hybrids were synthesized and characterized with various spectroscopic techniques. The synthesized compounds were tested at NCI, USA, on a 60-cell line panel and most of the compounds showed remarkable cytotoxic activity against different cancer cell lines. Compound 5a was found to be the most potent compound of the series and it was further selected for five dose assays wherein it exhibited GI50 value of 0.414 µM and 0.417 µM against HOP-62 and OVCAR-4 cell lines respectively. The in-silico mechanistic studies indicated that these compounds are acting through inhibition of lysine specific demethylase 1 (LSD1) as evident from in to vitro LSD1 inhibition activity of compounds. Among various synthesized derivatives, compound 5a was found to have IC50-value of 0.956 µM. In addition, absorption, distribution, metabolism, excretion and toxicity profile (ADMET) was assessed for these novel derivatives to get an insight on their pharmacokinetic/dynamic attributes which revealed that synthesized compounds showed acceptable metabolic stability in human liver microsomes with minimal inhibition of cytochrome P450s (CYPs). The results indicated that compound 5a could be a promising lead compound for further development as a therapeutic agent for anticancer activity.


Assuntos
Antineoplásicos , Hidrazonas , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desmetilases , Humanos , Hidrazonas/química , Lisina/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
5.
Immunobiology ; 225(1): 151847, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31561841

RESUMO

Protein tyrosine phosphorylation is a potent post-translational regulatory mechanism necessary for maintaining normal physiological functioning of immune cells and it is under the stringent control of antagonizing actions of Protein tyrosine phosphatases and kinases. Two such important Non-Receptor protein tyrosine phosphatases, SHP-1 and SHP-2, have been found to be expressed in immune cells and reported to be key regulators of immune cell development, functions, and differentiation by modulating the duration and amplitude of the downstream cascade transduced via receptors. They also have been conceded as the immune checkpoints & therapeutic targets and hence, it is important to understand their significance intricately. This review compares the roles of these two important cytoplasmic PTPs, SHP1 & SHP-2 in the regulation of peripheral as well as central immunity.


Assuntos
Imunidade Celular , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Animais , Diferenciação Celular/imunologia , Tolerância Central , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Tolerância Periférica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA