Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(6): e14506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881505

RESUMO

The human respiratory system is constantly exposed to environmental stimuli, sometimes including toxicants, which can trigger dysregulated lung immune responses that lead to respiratory symptoms, impaired lung function and airway diseases. Evidence supports that the microbiome in the lungs has an indispensable role in respiratory health and disease, acting as a local gatekeeper that mediates the interaction between the environmental cues and respiratory health. Moreover, the microbiome in the lungs is intimately intertwined with the oral microbiome through the oral-lung axis. Here, we discuss the intricate three-way relationship between (i) cigarette smoking, which has strong effects on the microbial community structure of the lung; (ii) microbiome dysbiosis and disease in the oral cavity; and (iii) microbiome dysbiosis in the lung and its causal role in patients suffering chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide. We highlight exciting outcomes arising from recently established interactions in the airway between environmental exposures, microbiome, metabolites-functional attributes and the host, as well as how these associations have the potential to predict the respiratory health status of the host through an airway microbiome health index. For completion, we argue that incorporating (synthetic) microbial community ecology in our contemporary understanding of lung disease presents challenges and also rises novel opportunities to exploit the oral-lung axis and its microbiome towards innovative airway disease diagnostics, prognostics, patient stratification and microbiota-targeted clinical interventions in the context of current therapies.


Assuntos
Exposição Ambiental , Pulmão , Microbiota , Boca , Humanos , Boca/microbiologia , Pulmão/microbiologia , Disbiose/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia
2.
Microbiol Spectr ; 11(6): e0099323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795992

RESUMO

IMPORTANCE: Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Humanos , Haemophilus influenzae/genética , Sistema Respiratório , Infecções por Haemophilus/microbiologia , Microscopia
3.
Biomolecules ; 9(12)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861238

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammation and impaired airway immunity, providing an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. In this context, therapies targeting not only overactive inflammation without significant adverse effects, but also infection are of interest. Increasing evidence suggests that polyphenols, plant secondary metabolites with anti-inflammatory and antimicrobial properties, may be protective. Here, a Cistus salviifolius plant extract containing quercetin, myricetin, and punicalagin was shown to reduce NTHi viability. Analysis of these polyphenols revealed that quercetin has a bactericidal effect on NTHi, does not display synergies, and that bacteria do not seem to develop resistance. Moreover, quercetin lowered NTHi airway epithelial invasion through a mechanism likely involving inhibition of Akt phosphorylation, and reduced the expression of bacterially-induced proinflammatory markers il-8, cxcl-1, il-6, pde4b, and tnfα. We further tested quercetin's effect on NTHi murine pulmonary infection, showing a moderate reduction in bacterial counts and significantly reduced expression of proinflammatory genes, compared to untreated mice. Quercetin administration during NTHi infection on a zebrafish septicemia infection model system showed a bacterial clearing effect without signs of host toxicity. In conclusion, this study highlights the therapeutic potential of the xenohormetic molecule quercetin against NTHi infection.


Assuntos
Antibacterianos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Haemophilus influenzae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quercetina/farmacologia , Células A549 , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Cistus/química , Modelos Animais de Doenças , Feminino , Infecções por Haemophilus/microbiologia , Humanos , Imunomodulação/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Doença Pulmonar Obstrutiva Crônica/microbiologia , Quercetina/química , Quercetina/isolamento & purificação , Células Tumorais Cultivadas , Peixe-Zebra
4.
Virulence ; 10(1): 315-333, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30973092

RESUMO

Nutrient iron sequestration is the most significant form of nutritional immunity and causes bacterial pathogens to evolve strategies of host iron scavenging. Cigarette smoking contains iron particulates altering lung and systemic iron homeostasis, which may enhance colonization in the lungs of patients suffering chronic obstructive pulmonary disease (COPD) by opportunistic pathogens such as nontypeable. NTHi is a heme auxotroph, and the NTHi genome contains multiple heme acquisition systems whose role in pulmonary infection requires a global understanding. In this study, we determined the relative contribution to NTHi airway infection of the four heme-acquisition systems HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF that are located at the bacterial outer membrane or the periplasm. Our computational studies provided plausible 3D models for HbpA, SapA, PE, and HxuA interactions with heme. Generation and characterization of single mutants in the hxuCBA, hpe, sapA, and hbpA genes provided evidence for participation in heme binding-storage and inter-bacterial donation. The hxuA, sapA, hbpA, and hpe genes showed differential expression and responded to heme. Moreover, HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF presented moonlighting properties related to resistance to antimicrobial peptides or glutathione import, together likely contributing to the NTHi-host airway interplay, as observed upon cultured airway epithelia and in vivo lung infection. The observed multi-functionality was shown to be system-specific, thus limiting redundancy. Together, we provide evidence for heme uptake systems as bacterial factors that act in a coordinated and multi-functional manner to subvert nutritional- and other sources of host innate immunity during NTHi airway infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Haemophilus influenzae/patogenicidade , Heme/metabolismo , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Infecções Respiratórias/microbiologia , Células A549 , Animais , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Simulação por Computador , Feminino , Proteínas Ligantes de Grupo Heme/genética , Proteínas Ligantes de Grupo Heme/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular
5.
Front Immunol ; 10: 458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936871

RESUMO

Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 µm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 µm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Células Epiteliais Alveolares/metabolismo , Animais , Aderência Bacteriana/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Vesículas Extracelulares/fisiologia , Infecções por Haemophilus/imunologia , Haemophilus influenzae/isolamento & purificação , Haemophilus influenzae/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Masculino , Camundongos , Neuropeptídeos/antagonistas & inibidores , Otite Média/microbiologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/microbiologia , Surfactantes Pulmonares/imunologia , Ratos , Ratos Sprague-Dawley , Receptores Depuradores/antagonistas & inibidores , Receptores Depuradores/fisiologia , Organismos Livres de Patógenos Específicos , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
6.
mBio ; 9(5)2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254117

RESUMO

Tracking bacterial evolution during chronic infection provides insights into how host selection pressures shape bacterial genomes. The human-restricted opportunistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of patients suffering chronic obstructive pulmonary disease (COPD) and contributes to disease progression. To identify bacterial genetic variation associated with bacterial adaptation to the COPD lung, we sequenced the genomes of 92 isolates collected from the sputum of 13 COPD patients over 1 to 9 years. Individuals were colonized by distinct clonal types (CTs) over time, but the same CT was often reisolated at a later time or found in different patients. Although genomes from the same CT were nearly identical, intra-CT variation due to mutation and recombination occurred. Recurrent mutations in several genes were likely involved in COPD lung adaptation. Notably, nearly a third of CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bifunctional membrane protein that both binds the human carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty acids (LCFAs). Our computational studies provide plausible three-dimensional models for FadL's interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mutations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi's ability to infect epithelia but also increases its resistance to bactericidal LCFAs enriched within the COPD lung. Supporting this interpretation, truncated fadL alleles are common in publicly available NTHi genomes isolated from the lower airway tract but rare in others. These results shed light on molecular mechanisms of bacterial pathoadaptation and guide future research toward developing novel COPD therapeutics.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in patients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial pathways undergoing in vivo evolutionary adaptation, we compared bacterial genomes collected over time from 13 COPD patients and identified recurrent genetic changes arising in independent bacterial lineages colonizing different patients. Besides finding changes in phase-variable genes, we found recurrent loss-of-function mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function reduces this bacterium's ability to infect cells via the hCEACAM1 epithelial receptor but also increases its resistance to bactericidal fatty acids enriched within the COPD lung, suggesting a case of antagonistic pleiotropy that restricts ΔfadL strains' niche. These results show how H. influenzae adapts to host-generated inflammatory mediators in the COPD airways.


Assuntos
Adaptação Biológica , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Pneumonia Bacteriana/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Idoso , Idoso de 80 Anos ou mais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Biologia Computacional , Proteínas de Transporte de Ácido Graxo/química , Proteínas de Transporte de Ácido Graxo/genética , Variação Genética , Genoma Bacteriano , Haemophilus influenzae/classificação , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Mutação , Recombinação Genética , Análise de Sequência de DNA , Escarro/microbiologia , Sequenciamento Completo do Genoma
7.
Sci Rep ; 8(1): 6872, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720703

RESUMO

Airway infection by nontypeable Haemophilus influenzae (NTHi) associates to chronic obstructive pulmonary disease (COPD) exacerbation and asthma neutrophilic airway inflammation. Lipids are key inflammatory mediators in these disease conditions and consequently, NTHi may encounter free fatty acids during airway persistence. However, molecular information on the interplay NTHi-free fatty acids is limited, and we lack evidence on the importance of such interaction to infection. Maintenance of the outer membrane lipid asymmetry may play an essential role in NTHi barrier function and interaction with hydrophobic molecules. VacJ/MlaA-MlaBCDEF prevents phospholipid accumulation at the bacterial surface, being the only system involved in maintaining membrane asymmetry identified in NTHi. We assessed the relationship among the NTHi VacJ/MlaA outer membrane lipoprotein, bacterial and exogenous fatty acids, and respiratory infection. The vacJ/mlaA gene inactivation increased NTHi fatty acid and phospholipid global content and fatty acyl specific species, which in turn increased bacterial susceptibility to hydrophobic antimicrobials, decreased NTHi epithelial infection, and increased clearance during pulmonary infection in mice with both normal lung function and emphysema, maybe related to their shared lung fatty acid profiles. Altogether, we provide evidence for VacJ/MlaA as a key bacterial factor modulating NTHi survival at the human airway upon exposure to hydrophobic molecules.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Haemophilus/metabolismo , Haemophilus influenzae/patogenicidade , Lipoproteínas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Mucosa Respiratória/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Feminino , Infecções por Haemophilus/microbiologia , Humanos , Camundongos , Mucosa Respiratória/microbiologia
8.
Sci Rep ; 7(1): 12860, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038519

RESUMO

The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is an important cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) that requires efficient treatments. A previous screening for host genes differentially expressed upon NTHi infection identified sirtuin-1, which encodes a NAD-dependent deacetylase protective against emphysema and is activated by resveratrol. This polyphenol concomitantly reduces NTHi viability, therefore highlighting its therapeutic potential against NTHi infection at the COPD airway. In this study, resveratrol antimicrobial effect on NTHi was shown to be bacteriostatic and did not induce resistance development in vitro. Analysis of modulatory properties on the NTHi-host airway epithelial interplay showed that resveratrol modulates bacterial invasion but not subcellular location, reduces inflammation without targeting phosphodiesterase 4B gene expression, and dampens ß defensin-2 gene expression in infected cells. Moreover, resveratrol therapeutics against NTHi was evaluated in vivo on mouse respiratory and zebrafish septicemia infection model systems, showing to decrease NTHi viability in a dose-dependent manner and reduce airway inflammation upon infection, and to have a significant bacterial clearing effect without signs of host toxicity, respectively. This study presents resveratrol as a therapeutic of particular translational significance due to the attractiveness of targeting both infection and overactive inflammation at the COPD airway.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Haemophilus/tratamento farmacológico , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/fisiologia , Fatores Imunológicos/uso terapêutico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Resveratrol/uso terapêutico , Células A549 , Administração Intranasal , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Células Cultivadas , Farmacorresistência Bacteriana/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Infecções por Haemophilus/patologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/crescimento & desenvolvimento , Humanos , Fatores Imunológicos/farmacologia , Interleucina-8/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/patologia , Infecções Respiratórias/patologia , Resveratrol/administração & dosagem , Resveratrol/farmacologia , Peixe-Zebra , beta-Defensinas/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-28676846

RESUMO

Antibacterial treatment with cotrimoxazol (TxS), a combination of trimethoprim and sulfamethoxazole, generates resistance by, among others, acquisition of thymidine auxotrophy associated with mutations in the thymidylate synthase gene thyA, which can modify the biology of infection. The opportunistic pathogen non-typeable Haemophilus influenzae (NTHi) is frequently encountered in the lower airways of chronic obstructive pulmonary disease (COPD) patients, and associated with acute exacerbation of COPD symptoms. Increasing resistance of NTHi to TxS limits its suitability as initial antibacterial against COPD exacerbation, although its relationship with thymidine auxotrophy is unknown. In this study, the analysis of 2,542 NTHi isolates recovered at Bellvitge University Hospital (Spain) in the period 2010-2014 revealed 119 strains forming slow-growing colonies on the thymidine low concentration medium Mueller Hinton Fastidious, including one strain isolated from a COPD patient undergoing TxS therapy that was a reversible thymidine auxotroph. To assess the impact of thymidine auxotrophy in the NTHi-host interplay during respiratory infection, thyA mutants were generated in both the clinical isolate NTHi375 and the reference strain RdKW20. Inactivation of the thyA gene increased TxS resistance, but also promoted morphological changes consistent with elongation and impaired bacterial division, which altered H. influenzae self-aggregation, phosphorylcholine level, C3b deposition, and airway epithelial infection patterns. Availability of external thymidine contributed to overcome such auxotrophy and TxS effect, potentially facilitated by the nucleoside transporter nupC. Although, thyA inactivation resulted in bacterial attenuation in a lung infection mouse model, it also rendered a lower clearance upon a TxS challenge in vivo. Thus, our results show that thymidine auxotrophy modulates both the NTHi host airway interplay and antibiotic resistance, which should be considered at the clinical setting for the consequences of TxS administration.


Assuntos
Resistência Microbiana a Medicamentos/efeitos dos fármacos , Infecções por Haemophilus/tratamento farmacológico , Haemophilus influenzae/crescimento & desenvolvimento , Haemophilus influenzae/metabolismo , Timidilato Sintase/genética , Células A549 , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , DNA Bacteriano , Feminino , Genes Bacterianos/genética , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/citologia , Haemophilus influenzae/genética , Interações Hospedeiro-Patógeno , Humanos , Interleucina-8/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Espanha , Sulfametoxazol/farmacologia , Timidina/metabolismo , Trimetoprima/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Virulência/genética
10.
PLoS Pathog ; 12(4): e1005576, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27124727

RESUMO

Many bacterial species actively take up and recombine homologous DNA into their genomes, called natural competence, a trait that offers a means to identify the genetic basis of naturally occurring phenotypic variation. Here, we describe "transformed recombinant enrichment profiling" (TREP), in which natural transformation is used to generate complex pools of recombinants, phenotypic selection is used to enrich for specific recombinants, and deep sequencing is used to survey for the genetic variation responsible. We applied TREP to investigate the genetic architecture of intracellular invasion by the human pathogen Haemophilus influenzae, a trait implicated in persistence during chronic infection. TREP identified the HMW1 adhesin as a crucial factor. Natural transformation of the hmw1 operon from a clinical isolate (86-028NP) into a laboratory isolate that lacks it (Rd KW20) resulted in ~1,000-fold increased invasion into airway epithelial cells. When a distinct recipient (Hi375, already possessing hmw1 and its paralog hmw2) was transformed by the same donor, allelic replacement of hmw2AHi375 by hmw1A86-028NP resulted in a ~100-fold increased intracellular invasion rate. The specific role of hmw1A86-028NP was confirmed by mutant and western blot analyses. Bacterial self-aggregation and adherence to airway cells were also increased in recombinants, suggesting that the high invasiveness induced by hmw1A86-028NP might be a consequence of these phenotypes. However, immunofluorescence results found that intracellular hmw1A86-028NP bacteria likely invaded as groups, instead of as individual bacterial cells, indicating an emergent invasion-specific consequence of hmw1A-mediated self-aggregation.


Assuntos
Adesinas Bacterianas/genética , Perfilação da Expressão Gênica/métodos , Infecções por Haemophilus/microbiologia , Western Blotting , Células Epiteliais/microbiologia , Haemophilus influenzae/genética , Humanos , Espaço Intracelular/microbiologia , Microscopia de Fluorescência , Reação em Cadeia da Polimerase
11.
Antimicrob Agents Chemother ; 59(12): 7581-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416856

RESUMO

Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.


Assuntos
Antibacterianos/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Infecções por Haemophilus/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Rolipram/farmacologia , Sirtuína 1/genética , Estilbenos/farmacologia , Animais , Linhagem Celular Tumoral , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Quimioterapia Combinada , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Humano , Infecções por Haemophilus/genética , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Resveratrol , Transdução de Sinais , Sirtuína 1/metabolismo
12.
Cell Microbiol ; 17(11): 1537-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26045209

RESUMO

Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not co-localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down-regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.


Assuntos
Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/fisiologia , Lisossomos/metabolismo , Macrófagos/microbiologia , Viabilidade Microbiana , Animais , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Vacúolos/microbiologia
13.
PLoS One ; 10(4): e0123154, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25894755

RESUMO

Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/fisiologia , Interações Hospedeiro-Patógeno , Sistema Respiratório/microbiologia , Infecções Respiratórias/microbiologia , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Aderência Bacteriana , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química , Técnicas de Tipagem Bacteriana , Biofilmes/crescimento & desenvolvimento , Moléculas de Adesão Celular/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Genes Bacterianos , Glicosilação , Infecções por Haemophilus/patologia , Haemophilus influenzae/genética , Humanos , Integrina alfa5/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Camundongos , Dados de Sequência Molecular , Mutação/genética , Sistema Respiratório/patologia , Infecções Respiratórias/patologia , Serina Endopeptidases/química
14.
Antimicrob Agents Chemother ; 59(5): 2700-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712355

RESUMO

Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that is an important cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). COPD is an inflammatory disease of the airways, and exacerbations are acute inflammatory events superimposed on this background of chronic inflammation. Azithromycin (AZM) is a macrolide antibiotic with antibacterial and anti-inflammatory properties and a clinically proven potential for AECOPD prevention and management. Relationships between AZM efficacy and resistance by NTHI and between bactericidal and immunomodulatory effects on NTHI respiratory infection have not been addressed. In this study, we employed two pathogenic NTHI strains with different AZM susceptibilities (NTHI 375 [AZM susceptible] and NTHI 353 [AZM resistant]) to evaluate the prophylactic and therapeutic effects of AZM on the NTHI-host interplay. At the cellular level, AZM was bactericidal toward intracellular NTHI inside alveolar and bronchial epithelia and alveolar macrophages, and it enhanced NTHI phagocytosis by the latter cell type. These effects correlated with the strain MIC of AZM and the antibiotic dose. Additionally, the effect of AZM on NTHI infection was assessed in a mouse model of pulmonary infection. AZM showed both preventive and therapeutic efficacies by lowering NTHI 375 bacterial counts in lungs and bronchoalveolar lavage fluid (BALF) and by reducing histopathological inflammatory lesions in the upper and lower airways of mice. Conversely, AZM did not reduce bacterial loads in animals infected with NTHI 353, in which case a milder anti-inflammatory effect was also observed. Together, the results of this work link the bactericidal and anti-inflammatory effects of AZM and frame the efficacy of this antibiotic against NTHI respiratory infection.


Assuntos
Azitromicina/uso terapêutico , Infecções por Haemophilus/tratamento farmacológico , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/patogenicidade , Infecções Respiratórias/tratamento farmacológico , Animais , Linhagem Celular , Células Epiteliais/virologia , Feminino , Humanos , Macrófagos Alveolares/virologia , Camundongos
15.
Infect Immun ; 81(11): 4100-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980106

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a frequent commensal of the human nasopharynx that causes opportunistic infection in immunocompromised individuals. Existing evidence associates lipooligosaccharide (LOS) with disease, but the specific and relative contributions of NTHi LOS modifications to virulence properties of the bacterium have not been comprehensively addressed. Using NTHi strain 375, an isolate for which the detailed LOS structure has been determined, we compared systematically a set of isogenic mutant strains expressing sequentially truncated LOS. The relative contributions of 2-keto-3-deoxyoctulosonic acid, the triheptose inner core, oligosaccharide extensions on heptoses I and III, phosphorylcholine, digalactose, and sialic acid to NTHi resistance to antimicrobial peptides (AMP), self-aggregation, biofilm formation, cultured human respiratory epithelial infection, and murine pulmonary infection were assessed. We show that opsX, lgtF, lpsA, lic1, and lic2A contribute to bacterial resistance to AMP; lic1 is related to NTHi self-aggregation; lgtF, lic1, and siaB are involved in biofilm growth; opsX and lgtF participate in epithelial infection; and opsX, lgtF, and lpsA contribute to lung infection. Depending on the phenotype, the involvement of these LOS modifications occurs at different extents, independently or having an additive effect in combination. We discuss the relative contribution of LOS epitopes to NTHi virulence and frame a range of pathogenic traits in the context of infection.


Assuntos
Endotoxinas/metabolismo , Haemophilus influenzae/patogenicidade , Lipopolissacarídeos/metabolismo , Fatores de Virulência/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Biofilmes/crescimento & desenvolvimento , Broncopneumonia/microbiologia , Broncopneumonia/patologia , Adesão Celular , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Feminino , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/fisiologia , Humanos , Redes e Vias Metabólicas/genética , Camundongos , Mutação , Virulência
16.
Cell Microbiol ; 15(7): 1212-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23347154

RESUMO

The NF-κB transcriptional factor plays a key role governing the activation of immune responses. Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response. Recently, we have demonstrated that Klebsiella antagonizes the activation of NF-κB via the deubiquitinase CYLD. In this work, by applying a high-throughput siRNA gain-of-function screen interrogating the human kinome, we identified 17 kinases that when targeted by siRNA restored IL-1ß-dependent NF-κB translocation in infected cells. Further characterization revealed that K. pneumoniae activates an EGF receptor (EGFR)-phosphatidylinositol 3-OH kinase (PI3K)-AKT-PAK4-ERK-GSK3ß signalling pathway to attenuate the cytokine-dependent nuclear translocation of NF-κB. Our data also revealed that CYLD is a downstream effector of K. pneumoniae-induced EGFR-PI3K-AKT-PAK4-ERK-GSK3ß signalling pathway. Our efforts to identify the bacterial factor(s)responsible for EGFR activation demonstrate that a capsule (CPS) mutant did not activate EGFR hence suggesting that CPS could mediate the activation of EGFR. Supporting this notion, purified CPS did activate EGFR as well as the EGFR-dependent PI3K-AKT-PAK4-ERK-GSK3ß signalling pathway. CPS-mediated EGFR activation was dependent on a TLR4-MyD88-c-SRC-dependent pathway. Several promising drugs have been developed to antagonize this cascade. We propose that agents targeting this signalling pathway might provide selective alternatives for the management of K. pneumoniae pneumonias.


Assuntos
Receptores ErbB/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/patogenicidade , Proteínas Quinases/metabolismo , Transdução de Sinais , Cápsulas Bacterianas/imunologia , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos
17.
Microbiology (Reading) ; 158(Pt 9): 2384-2398, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22723286

RESUMO

Non-typable Haemophilus influenzae (NTHi) is a common commensal of the human nasopharynx, but causes opportunistic infection when the respiratory tract is compromised by infection or disease. The ability of NTHi to invade epithelial cells has been described, but the underlying molecular mechanisms are poorly characterized. We previously determined that NTHi promotes phosphorylation of the serine-threonine kinase Akt in A549 human lung epithelial cells, and that Akt phosphorylation and NTHi cell invasion are prevented by inhibition of phosphoinositide 3-kinase (PI3K). Because PI3K-Akt signalling is associated with several host cell networks, the purpose of the current study was to identify eukaryotic molecules important for NTHi epithelial invasion. We found that inhibition of Akt activity reduced NTHi internalization; differently, bacterial entry was increased by phospholipase Cγ1 inhibition but was not affected by protein kinase inhibition. We also found that α5 and ß1 integrins, and the tyrosine kinases focal adhesion kinase and Src, are important for NTHi A549 cell invasion. NTHi internalization was shown to be favoured by activation of Rac1 guanosine triphosphatase (GTPase), together with the guanine nucleotide exchange factor Vav2 and the effector Pak1. Also, Pak1 might be associated with inactivation of the microtubule destabilizing agent Op18/stathmin, to facilitate microtubule polymerization and NTHi entry. Conversely, inhibition of RhoA GTPase and its effector ROCK increased the number of internalized bacteria. Src and Rac1 were found to be important for NTHi-triggered Akt phosphorylation. An increase in host cyclic AMP reduced bacterial entry, which was linked to protein kinase A. These findings suggest that NTHi finely manipulates host signalling molecules to invade respiratory epithelial cells.


Assuntos
Endocitose , Células Epiteliais/microbiologia , Haemophilus influenzae/patogenicidade , Integrinas/metabolismo , Microtúbulos/metabolismo , Fosfotransferases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular , Humanos
18.
Cell Microbiol ; 13(1): 135-53, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20846183

RESUMO

Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Subversion of inflammation is essential for pathogen survival during infection. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response although the molecular bases are currently unknown. Here we unveil a novel strategy employed by a pathogen to counteract the activation of inflammatory responses. K. pneumoniae attenuates pro-inflammatory mediators-induced IL-8 secretion. Klebsiella antagonizes the activation of NF-κB via the deubiquitinase CYLD and blocks the phosphorylation of mitogen-activated protein kinases (MAPKs) via the MAPK phosphatase MKP-1. Our studies demonstrate that K. pneumoniae has evolved the capacity to manipulate host systems dedicated to control the immune balance. To exert this anti-inflammatory effect, Klebsiella engages NOD1. In NOD1 knock-down cells, Klebsiella neither induces the expression of CYLD and MKP-1 nor blocks the activation of NF-κB and MAPKs. Klebsiella inhibits Rac1 activation; and inhibition of Rac1 activity triggers a NOD1-mediated CYLD and MKP-1 expression which in turn attenuates IL-1ß-induced IL-8 secretion. A capsule (CPS) mutant does not attenuate the inflammatory response. However, purified CPS neither reduces IL-1ß-induced IL-8 secretion nor induces the expression of CYLD and MKP-1 thereby indicating that CPS is necessary but not sufficient to attenuate inflammation.


Assuntos
Evasão da Resposta Imune , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/patogenicidade , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Linhagem Celular , Enzima Desubiquitinante CYLD , Fosfatase 1 de Especificidade Dupla/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Inflamação/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD1/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Microbiology (Reading) ; 157(Pt 1): 234-250, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20929955

RESUMO

Nontypable Haemophilus influenzae (NTHi) is a Gram-negative, non-capsulated human bacterial pathogen, a major cause of a repertoire of respiratory infections, and intimately associated with persistent lung bacterial colonization in patients suffering from chronic obstructive pulmonary disease (COPD). Despite its medical relevance, relatively little is known about its mechanisms of pathogenicity. In this study, we found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling. We found that the majority of intracellular bacteria are located inside an acidic subcellular compartment, in a metabolically active and non-proliferative state. This NTHi-containing vacuole (NTHi-CV) is endowed with late endosome features, co-localizing with LysoTracker, lamp-1, lamp-2, CD63 and Rab7. The NTHi-CV does not acquire Golgi- or autophagy-related markers. These observations were extended to immortalized and primary human airway epithelial cells. By using NTHi clinical isolates expressing different amounts of phosphocholine (PCho), a major modification of NTHi lipooligosaccharide, on their surfaces, and an isogenic lic1BC mutant strain lacking PCho, we showed that PCho is not responsible for NTHi intracellular location. In sum, this study indicates that NTHi can survive inside airway epithelial cells.


Assuntos
Células Epiteliais/microbiologia , Haemophilus influenzae/patogenicidade , Viabilidade Microbiana , Técnicas de Tipagem Bacteriana , Endocitose , Endossomos/química , Endossomos/microbiologia , Haemophilus influenzae/classificação , Haemophilus influenzae/metabolismo , Haemophilus influenzae/fisiologia , Humanos , Microdomínios da Membrana/metabolismo , Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais , Virulência
20.
PLoS One ; 5(4): e10033, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20383325

RESUMO

Infected airway epithelial cells up-regulate the expression of chemokines, chiefly IL-8, and antimicrobial molecules including beta-defensins (BD). Acinetobacter baumannii is a cause of hospital-acquired pneumonia. We examined whether A. baumannii induced the expressions of IL-8 and BD2 by airway epithelial cells and the receptors implicated in bacterial detection. A549 and human primary airway cells released IL-8 upon infection. A. baumannii-infected cells also increased the expression of BD2 which killed A. baummannii strains. IL-8 induction was via NF-kappaB and mitogen-activated kinases p38 and p44/42-dependent pathways. A. baumannii engaged Toll-like receptor (TLR) 2 and TLR4 pathways and A549 cells could use soluble CD14 as TLRs co-receptor. A. baumannii lipopolysaccharide stimulated IL-8 release by A549 cells and sCD14 facilitated the recognition of the lipopolysaccharide. Mass spectrometry analysis revealed that A. baumannii lipid A structure matches those with endotoxic potential. These results demonstrate that airway epithelial cells produce mediators important for A. baumannii clearance.


Assuntos
Acinetobacter baumannii/imunologia , Interações Hospedeiro-Patógeno , Inflamação/etiologia , Pneumonia/microbiologia , Transdução de Sinais , Infecções por Acinetobacter , Linhagem Celular , Células Epiteliais , Humanos , Mediadores da Inflamação/análise , Interleucina-8/genética , Pneumonia/imunologia , Sistema Respiratório/citologia , Regulação para Cima/genética , beta-Defensinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA