RESUMO
The generation of organoids is one of the biggest scientific advances in regenerative medicine. Here, by lengthening the time that human pluripotent stem cells (hPSCs) were exposed to a three-dimensional microenvironment, and by applying defined renal inductive signals, we generated kidney organoids that transcriptomically matched second-trimester human fetal kidneys. We validated these results using ex vivo and in vitro assays that model renal development. Furthermore, we developed a transplantation method that utilizes the chick chorioallantoic membrane. This approach created a soft in vivo microenvironment that promoted the growth and differentiation of implanted kidney organoids, as well as providing a vascular component. The stiffness of the in ovo chorioallantoic membrane microenvironment was recapitulated in vitro by fabricating compliant hydrogels. These biomaterials promoted the efficient generation of renal vesicles and nephron structures, demonstrating that a soft environment accelerates the differentiation of hPSC-derived kidney organoids.
Assuntos
Espaço Extracelular/metabolismo , Rim/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Tecidos/métodos , Diferenciação Celular , Microambiente Celular , Feminino , Humanos , Cinética , Células-Tronco Pluripotentes/metabolismo , Gravidez , Terceiro Trimestre da Gravidez , TranscriptomaRESUMO
Fundamental biological processes are carried out by curved epithelial sheets that enclose a pressurized lumen. How these sheets develop and withstand three-dimensional deformations has remained unclear. Here we combine measurements of epithelial tension and shape with theoretical modelling to show that epithelial sheets are active superelastic materials. We produce arrays of epithelial domes with controlled geometry. Quantification of luminal pressure and epithelial tension reveals a tensional plateau over several-fold areal strains. These extreme strains in the tissue are accommodated by highly heterogeneous strains at a cellular level, in seeming contradiction to the measured tensional uniformity. This phenomenon is reminiscent of superelasticity, a behaviour that is generally attributed to microscopic material instabilities in metal alloys. We show that in epithelial cells this instability is triggered by a stretch-induced dilution of the actin cortex, and is rescued by the intermediate filament network. Our study reveals a type of mechanical behaviour-which we term active superelasticity-that enables epithelial sheets to sustain extreme stretching under constant tension.
Assuntos
Elasticidade , Células Epiteliais/citologia , Actinas/metabolismo , Ligas , Animais , Fenômenos Biomecânicos , Células CACO-2 , Forma Celular , Tamanho Celular , Citocalasina D/metabolismo , Cães , Células Epiteliais/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Células Madin Darby de Rim Canino , PressãoRESUMO
PURPOSE OF REVIEW: The goal of this paper is to highlight the major challenges in the translation of human pluripotent stem cells into a clinical setting. RECENT FINDINGS: Innate features from human induced pluripotent stem cells (hiPSCs) positioned these patient-specific cells as an unprecedented cell source for regenerative medicine applications. Immunogenicity of differentiated iPSCs requires more research towards the definition of common criteria for the evaluation of innate and host immune responses as well as in the generation of standardized protocols for iPSC generation and differentiation. The coming years will resolve ongoing clinical trials using both human embryonic stem cells (hESCs) and hiPSCs providing exciting information for the optimization of potential clinical applications of stem cell therapies. SUMMARY: Rapid advances in the field of iPSCs generated high expectations in the field of regenerative medicine. Understanding therapeutic applications of iPSCs certainly needs further investigation on autologous/allogenic iPSC transplantation.
RESUMO
Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease.
Assuntos
Engenharia Genética/métodos , Nefropatias/terapia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Animais , Sistemas CRISPR-Cas , HumanosRESUMO
Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.
Assuntos
Transplante de Coração , Miocárdio/citologia , Células-Tronco Pluripotentes/citologia , Miosinas Cardíacas/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colágeno/farmacologia , Combinação de Medicamentos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Matriz Extracelular/metabolismo , Loci Gênicos , Ventrículos do Coração/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Laminina/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Proteoglicanas/farmacologia , Nucleases dos Efetores Semelhantes a Ativadores de TranscriçãoRESUMO
Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from â¼ 15 kPa at the alveolar septum to â¼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a â¼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and conventional decellularization procedures do not result in substantially different local stiffness in the acellular lung.
Assuntos
Pulmão/citologia , Pulmão/fisiologia , Engenharia Tecidual/métodos , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Módulo de Elasticidade , Elastina/metabolismo , Glicosaminoglicanos/metabolismo , Laminina/metabolismo , Pulmão/irrigação sanguínea , Masculino , Microscopia de Força Atômica , Ratos Sprague-DawleyRESUMO
High frequency intermittent hypoxia is one of the most relevant injurious stimuli experienced by patients with obstructive sleep apnea (OSA). Given that the conventional setting for culturing cells under intermittent hypoxia conditions is limited by long equilibration times, we designed a simple bioreactor capable of effectively subjecting cultured cells to controlled high-frequency hypoxic/normoxic stimuli. The bioreactor's operation is based on exposing cells to a medium that is bubbled with the appropriate mixture of gases into two separate containers, and from there it is directed to the cell culture dish with the aid of two bidirectional peristaltic pumps. The device was tested on human alveolar epithelial cells (A549) and mouse melanoma cells (B16-F10), subjecting them to patterns of intermittent hypoxia (20s at 5% O(2) and 50s at 20% O(2)), which realistically mimic OSA of up to severe intensity as defined by the apnea hypopnea index. The proposed bioreactor can be easily and inexpensively assembled and is of practical use for investigating the effects of high-rate changes in oxygen concentration in the cell culture medium.
Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Células Epiteliais/fisiologia , Oxigênio/administração & dosagem , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Camundongos , Alvéolos Pulmonares/citologiaRESUMO
The pig represents an ideal large-animal model, intermediate between rodents and humans, for the preclinical assessment of emerging cell therapies. As no validated pig embryonic stem (pES) cell lines have been derived so far, pig induced pluripotent stem cells (piPSCs) should offer an alternative source of undifferentiated cells to advance regenerative medicine research from bench to clinical trial. We report here for the first time the derivation of piPSCs from adult fibroblast with only three transcription factors: Sox2 (sex determining region Y-box 2), Klf4 (Krüppel-like factor 4), and c-Myc (avian myelocytomatosis viral oncogene homolog). We have been able to demonstrate that exogenous Pou5f1 (POU domain class 5 transcription factor 1; abbreviated as Octamer-4: Oct4) is dispensable to achieve and maintain pluripotency in the generation of piPSCs. To the best of our knowledge, this is also the first report of somatic reprogramming in any species without the overexpression, either directly or indirectly, of Oct4. Moreover, we were able to generate piPSCs without the use of feeder cells, approaching thus xeno-free conditions. Our work paves the way for the derivation of clinical grade piPSCs for regenerative medicine.
Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Células Alimentadoras/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Medicina Regenerativa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , SuínosRESUMO
Reprogramming of somatic cells to induced pluripotent stem (iPS) cells can be achieved by the delivery of a combination of transcription factors, including Oct4, Sox2, Klf4, and c-Myc. Retroviral and lentiviral vectors are commonly used to express these four reprogramming factors separately and obtain reprogrammed iPS cells. Although efficient and reproducible, these approaches involve the time-consuming and labor-intensive production of retroviral or lentiviral particles together with a high risk of working with potentially harmful viruses overexpressing potent oncogenes, such as c-Myc. Here, we describe a simple method to produce bona fide iPS cells from human fibroblasts using poly-ß-amino esters as the transfection reagent for the delivery of a single CAG-driven polycistronic plasmid expressing Oct4, Sox2, Klf4, c-Myc, and a GFP reporter gene (OSKMG). We demonstrate for the first time that poly-ß-amino esters can be used to deliver a single polycistronic reprogramming vector into human fibroblasts, achieving significantly higher transfection efficiency than with conventional transfection reagents. After a protocol of serial transfections using poly-ß-amino esters, we report a simple methodology to generate human iPS cells from human fibroblasts avoiding the use of viral vectors.
Assuntos
Técnicas de Transferência de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Polímeros/química , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Cariotipagem , Fator 4 Semelhante a Kruppel , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , TransfecçãoRESUMO
The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.
Assuntos
Anemia de Fanconi/patologia , Anemia de Fanconi/terapia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Linhagem Celular , Reprogramação Celular , Saúde , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes/metabolismoRESUMO
The utility of induced pluripotent stem (iPS) cells for investigating the molecular logic of pluripotency and for eventual clinical application is limited by the low efficiency of current methods for reprogramming. Here we show that reprogramming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts. Keratinocyte-derived iPS (KiPS) cells appear indistinguishable from human embryonic stem cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, global gene expression profiles and differentiation potential in vitro and in vivo. To underscore the efficiency and practicability of this technology, we generated KiPS cells from single adult human hairs. Our findings provide an experimental model for investigating the bases of cellular reprogramming and highlight potential advantages of using keratinocytes to generate patient-specific iPS cells.
Assuntos
Técnicas de Cultura de Células/métodos , Queratinócitos/citologia , Células-Tronco Pluripotentes/citologia , Adulto , Biotecnologia/métodos , Diferenciação Celular , Reprogramação Celular , Pré-Escolar , Humanos , Queratinócitos/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Retroviridae/genética , Fatores de Transcrição SOXB1/genética , Fatores de Tempo , Transdução GenéticaRESUMO
In the present work, we studied the differentiation capacity of mouse embryonic stem cells (mESCs) and mouse embryonic fibroblasts (MEFs) to differentiate into osteoblast-like cells in a 3-dimensional (3D) self-assembling peptide scaffold, a synthetic nanofiber biomaterial with potential applications in regenerative medicine. We demonstrated that 2D and 3D systems promoted differentiation of mESCs into cells with an osteoblast-like phenotype consisting of osteopontin and collagen I marker expression, as well as high alkaline phosphatase (ALP) activity and calcium phosphate deposits. In 3D cultures the frequency of appearance of embryonic stem cell-like colonies was substantially greater, suggesting that the 3D microenvironment promoted the generation of a stem cell-like niche that allows undifferentiated stem cell maintenance. On the other hand, after MEFs were cultured in the 3D system with their regular growth medium, but not in the 2D system, they expressed osteopontin, up-regulated metalloproteinase activities, and acquired a distinct phenotype consisting of small, elongated cells with remaining mitotic activity. Furthermore, only 3D MEF cultures underwent osteoblast differentiation after osteogenic induction, based on matrix mineralization, collagen I synthesis, ALP activity, and expression of the osteoblast transcription factor Runx2, suggesting that the 3D environment promotes differentiation of MEFs into osteoblast-like cells. We propose that the 3D system provides a unique microenvironment that promotes differentiation of mESCs and MEFs into osteoblast-like cells.