RESUMO
Metastasis is the leading cause of cancer-related deaths. It is unclear how intratumor heterogeneity (ITH) contributes to metastasis and how metastatic cells adapt to distant tissue environments. The study of these adaptations is challenged by the limited access to patient material and a lack of experimental models that appropriately recapitulate ITH. To investigate metastatic cell adaptations and the contribution of ITH to metastasis, we analyzed single-cell transcriptomes of matched primary tumors and metastases from patient-derived xenograft models of breast cancer. We found profound transcriptional differences between the primary tumor and metastatic cells. Primary tumors upregulated several metabolic genes, whereas motility pathway genes were upregulated in micrometastases, and stress response signaling was upregulated during progression. Additionally, we identified primary tumor gene signatures that were associated with increased metastatic potential and correlated with patient outcomes. Immune-regulatory control pathways were enriched in poorly metastatic primary tumors, whereas genes involved in epithelial-mesenchymal transition were upregulated in highly metastatic tumors. We found that ITH was dominated by epithelial-mesenchymal plasticity (EMP), which presented as a dynamic continuum with intermediate EMP cell states characterized by specific genes such as CRYAB and S100A2. Elevated expression of an intermediate EMP signature correlated with worse patient outcomes. Our findings identified inhibition of the intermediate EMP cell state as a potential therapeutic target to block metastasis.
Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Metástase Neoplásica , Análise de Célula Única , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linhagem Celular TumoralRESUMO
Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.
Assuntos
Matriz Extracelular , Mucosa Intestinal , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesoderma/metabolismo , Mesoderma/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Morfogênese , Metaloproteinases da Matriz/metabolismoRESUMO
Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.
Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Adipócitos/metabolismo , Neoplasias da Mama/patologia , Células Endoteliais/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Rosiglitazona/farmacologiaRESUMO
The gastrointestinal tract relies on the production, maturation, and transit of mucin to protect against pathogens and to lubricate the epithelial lining. Although the molecular and cellular mechanisms that regulate mucin production and movement are beginning to be understood, the upstream epithelial signals that contribute to mucin regulation remain unclear. Here, we report that the inflammatory cytokine tumor necrosis factor (TNF), generated by the epithelium, contributes to mucin homeostasis by regulating both cell differentiation and cystic fibrosis transmembrane conductance regulator (CFTR) activity. We used genetic mouse models and noninflamed samples from patients with inflammatory bowel disease (IBD) undergoing anti-TNF therapy to assess the effect of in vivo perturbation of TNF. We found that inhibition of epithelial TNF promotes the differentiation of secretory progenitor cells into mucus-producing goblet cells. Furthermore, TNF treatment and CFTR inhibition in intestinal organoids demonstrated that TNF promotes ion transport and luminal flow via CFTR. The absence of TNF led to slower gut transit times, which we propose results from increased mucus accumulation coupled with decreased luminal fluid pumping. These findings point to a TNF/CFTR signaling axis in the adult intestine and identify epithelial cell-derived TNF as an upstream regulator of mucin homeostasis.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Mucinas , Humanos , Animais , Camundongos , Mucinas/genética , Mucinas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Inibidores do Fator de Necrose Tumoral , Células Epiteliais/metabolismo , Diferenciação Celular , Fatores de Necrose Tumoral , HomeostaseRESUMO
Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microfluídica , Humanos , Animais , Camundongos , Microfluídica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Genômica/métodos , Transcriptoma/genéticaRESUMO
The rise and fall of estrogen and progesterone across menstrual cycles and during pregnancy regulates breast development and modifies cancer risk. How these hormones impact each cell type in the breast remains poorly understood because they act indirectly through paracrine networks. Using single-cell analysis of premenopausal breast tissue, we reveal a network of coordinated transcriptional programs representing the tissue-level response to changing hormone levels. Our computational approach, DECIPHER-seq, leverages person-to-person variability in breast composition and cell state to uncover programs that co-vary across individuals. We use differences in cell-type proportions to infer a subset of programs that arise from direct cell-cell interactions regulated by hormones. Further, we demonstrate that prior pregnancy and obesity modify hormone responsiveness through distinct mechanisms: obesity reduces the proportion of hormone-responsive cells, whereas pregnancy dampens the direct response of these cells to hormones. Together, these results provide a comprehensive map of the cycling human breast.
Assuntos
Mama , Progesterona , Mama/metabolismo , Comunicação Celular , Estrogênios/metabolismo , Feminino , Humanos , Obesidade/metabolismo , Gravidez , Progesterona/metabolismoRESUMO
Organoids recapitulate complex 3D organ structures and represent a unique opportunity to probe the principles of self-organization. While we can alter an organoid's morphology by manipulating the culture conditions, the morphology of an organoid often resembles that of its original organ, suggesting that organoid morphologies are governed by a set of tissue-specific constraints. Here, we establish a framework to identify constraints on an organoid's morphological features by quantifying them from microscopy images of organoids exposed to a range of perturbations. We apply this framework to Madin-Darby canine kidney cysts and show that they obey a number of constraints taking the form of scaling relationships or caps on certain parameters. For example, we found that the number, but not size, of cells increases with increasing cyst size. We also find that these constraints vary with cyst age and can be altered by varying the culture conditions. We observed similar sets of constraints in intestinal organoids. This quantitative framework for identifying constraints on organoid morphologies may inform future efforts to engineer organoids.
Assuntos
Cistos , Organoides , Animais , Cães , FenótipoRESUMO
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.
Assuntos
Neoplasias , Animais , Genes ras , Camundongos , Neoplasias/genética , Filogenia , Sequenciamento do ExomaRESUMO
SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.
Assuntos
Compostos Benzidrílicos , Carcinogênese , Estrogênios , Glândulas Mamárias Humanas , Fenóis , Proteoma , Sulfonas , Compostos Benzidrílicos/toxicidade , Carcinogênese/induzido quimicamente , Estrogênios/toxicidade , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/patologia , Organoides/efeitos dos fármacos , Organoides/patologia , Fenóis/toxicidade , Proteoma/efeitos dos fármacos , Proteômica , Sulfonas/toxicidadeRESUMO
Overexpressed tumor-associated antigens [for example, epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2)] are attractive targets for therapeutic T cells, but toxic "off-tumor" cross-reaction with normal tissues that express low levels of target antigen can occur with chimeric antigen receptor (CAR)-T cells. Inspired by natural ultrasensitive response circuits, we engineered a two-step positive-feedback circuit that allows human cytotoxic T cells to discriminate targets on the basis of a sigmoidal antigen-density threshold. In this circuit, a low-affinity synthetic Notch receptor for HER2 controls the expression of a high-affinity CAR for HER2. Increasing HER2 density thus has cooperative effects on T cells-it increases both CAR expression and activation-leading to a sigmoidal response. T cells with this circuit show sharp discrimination between target cells expressing normal amounts of HER2 and cancer cells expressing 100 times as much HER2, both in vitro and in vivo.
Assuntos
Engenharia Celular , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Células K562 , Camundongos , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptores Artificiais/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Esferoides Celulares , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Droplet libraries consisting of many reagents encapsulated in separate droplets are necessary for applications of microfluidics, including combinatorial chemical synthesis, DNA-encoded libraries, and massively multiplexed PCR. However, existing approaches for generating them are laborious and impractical. Here, we describe an automated approach using a commercial array spotter. The approach can controllably emulsify hundreds of different reagents in a fraction of the time of manual operation of a microfluidic device, and without any user intervention. We demonstrate that the droplets produced by the spotter are similarly uniform to those produced by microfluidics and automate the generation of a ~ 2 mL emulsion containing 192 different reagents in ~ 4 h. The ease with which it can generate high diversity droplet libraries should make combinatorial applications more feasible in droplet microfluidics. Moreover, the instrument serves as an automated droplet generator, allowing execution of droplet reactions without microfluidic expertise.
Assuntos
Automação Laboratorial/métodos , Microfluídica/métodos , Automação Laboratorial/instrumentação , Emulsões/química , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Lipídeos/química , Microfluídica/instrumentação , Bibliotecas de Moléculas Pequenas/químicaRESUMO
Spatial transcriptomics seeks to integrate single cell transcriptomic data within the three-dimensional space of multicellular biology. Current methods to correlate a cell's position with its transcriptome in living tissues have various limitations. We developed an approach, called 'ZipSeq', that uses patterned illumination and photocaged oligonucleotides to serially print barcodes ('zipcodes') onto live cells in intact tissues, in real time and with an on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in vitro wound healing, live lymph node sections and a live tumor microenvironment. In all cases, we discovered new gene expression patterns associated with histological structures. In the tumor microenvironment, this demonstrated a trajectory of myeloid and T cell differentiation from the periphery inward. A combinatorial variation of ZipSeq efficiently scales in the number of regions defined, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.
Assuntos
Código de Barras de DNA Taxonômico/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Biologia Computacional , Regulação da Expressão Gênica , Linfonodos , Camundongos , Células NIH 3T3 , Linfócitos T , Microambiente TumoralRESUMO
The mammary gland is a highly dynamic tissue that undergoes repeated cycles of growth and involution during pregnancy and menstruation. It is also the site from which breast cancers emerge. Organoids provide an in vitro model that preserves several of the cellular, structural, and microenvironmental features that dictate mammary gland function in vivo and have greatly advanced our understanding of glandular biology. Their tractability for genetic manipulation, live imaging, and high throughput screening have facilitated investigation into the mechanisms of glandular morphogenesis, structural maintenance, tumor progression, and invasion. Opportunities remain to enhance cellular and structural complexity of mammary organoid models, including incorporating additional cell types and hormone signaling.
Assuntos
Neoplasias da Mama/patologia , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/patologia , Modelos Biológicos , Organoides/patologia , Animais , Feminino , Humanos , MorfogêneseRESUMO
A promising molecular target for aggressive cancers is the urokinase receptor (uPAR). A fully human, recombinant antibody that binds uPAR to form a stable complex that blocks uPA-uPAR interactions (2G10) and is internalized primarily through endocytosis showed efficacy in a mouse xenograft model of highly aggressive, triple negative breast cancer (TNBC). Antibody-drug conjugates (ADCs) of 2G10 were designed and produced bearing tubulin inhibitor payloads ligated through seven different linkers. Aldehyde tag technology was employed for linking, and either one or two tags were inserted into the antibody heavy chain, to produce site-specifically conjugated ADCs with drug-to-antibody ratios of either two or four. Both cleavable and non-cleavable linkers were combined with two different antimitotic toxins-MMAE (monomethylauristatin E) and maytansine. Nine different 2G10 ADCs were produced and tested for their ability to target uPAR in cell-based assays and a mouse model. The anti-uPAR ADC that resulted in tumor regression comprised an MMAE payload with a cathepsin B cleavable linker, 2G10-RED-244-MMAE. This work demonstrates in vitro activity of the 2G10-RED-244-MMAE in TNBC cell lines and validates uPAR as a therapeutic target for TNBC.
RESUMO
Sample multiplexing facilitates scRNA-seq by reducing costs and identifying artifacts such as cell doublets. However, universal and scalable sample barcoding strategies have not been described. We therefore developed MULTI-seq: multiplexing using lipid-tagged indices for single-cell and single-nucleus RNA sequencing. MULTI-seq reagents can barcode any cell type or nucleus from any species with an accessible plasma membrane. The method involves minimal sample processing, thereby preserving cell viability and endogenous gene expression patterns. When cells are classified into sample groups using MULTI-seq barcode abundances, data quality is improved through doublet identification and recovery of cells with low RNA content that would otherwise be discarded by standard quality-control workflows. We use MULTI-seq to track the dynamics of T-cell activation, perform a 96-plex perturbation experiment with primary human mammary epithelial cells and multiplex cryopreserved tumors and metastatic sites isolated from a patient-derived xenograft mouse model of triple-negative breast cancer.
Assuntos
Lipídeos/química , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Sequência de Bases , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , HumanosRESUMO
The utility of small molecules to probe or perturb biological systems is limited by the lack of cell-specificity. "Masking" the activity of small molecules using a general chemical modification and "unmasking" it only within target cells overcomes this limitation. To this end, we have developed a selective enzyme-substrate pair consisting of engineered variants of E. coli nitroreductase (NTR) and a 2-nitro- N-methylimidazolyl (NM) masking group. To discover and optimize this NTR-NM system, we synthesized a series of fluorogenic substrates containing different nitroaromatic masking groups, confirmed their stability in cells, and identified the best substrate for NTR. We then engineered the enzyme for improved activity in mammalian cells, ultimately yielding an enzyme variant (enhanced NTR, or eNTR) that possesses up to 100-fold increased activity over wild-type NTR. These improved NTR enzymes combined with the optimal NM masking group enable rapid, selective unmasking of dyes, indicators, and drugs to genetically defined populations of cells.
Assuntos
Proteínas de Escherichia coli/metabolismo , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Nitroimidazóis/metabolismo , Nitrorredutases/metabolismo , Pró-Fármacos/metabolismo , Animais , Linhagem Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Maleato de Dizocilpina/análogos & derivados , Maleato de Dizocilpina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Fluoresceínas/síntese química , Fluoresceínas/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neurônios/metabolismo , Nitroimidazóis/síntese química , Nitroimidazóis/química , Nitrorredutases/genética , Pró-Fármacos/síntese química , Pró-Fármacos/química , Engenharia de Proteínas , Ratos Sprague-Dawley , Proteína Vermelha FluorescenteRESUMO
The mechanical properties of cells change with their differentiation, chronological age, and malignant progression. Consequently, these properties may be useful label-free biomarkers of various functional or clinically relevant cell states. Here, we demonstrate mechano-node-pore sensing (mechano-NPS), a multi-parametric single-cell-analysis method that utilizes a four-terminal measurement of the current across a microfluidic channel to quantify simultaneously cell diameter, resistance to compressive deformation, transverse deformation under constant strain, and recovery time after deformation. We define a new parameter, the whole-cell deformability index (wCDI), which provides a quantitative mechanical metric of the resistance to compressive deformation that can be used to discriminate among different cell types. The wCDI and the transverse deformation under constant strain show malignant MCF-7 and A549 cell lines are mechanically distinct from non-malignant, MCF-10A and BEAS-2B cell lines, and distinguishes between cells treated or untreated with cytoskeleton-perturbing small molecules. We categorize cell recovery time, ΔTr, as instantaneous (ΔTr ~ 0 ms), transient (ΔTr ≤ 40ms), or prolonged (ΔTr > 40ms), and show that the composition of recovery types, which is a consequence of changes in cytoskeletal organization, correlates with cellular transformation. Through the wCDI and cell-recovery time, mechano-NPS discriminates between sub-lineages of normal primary human mammary epithelial cells with accuracy comparable to flow cytometry, but without antibody labeling. Mechano-NPS identifies mechanical phenotypes that distinguishes lineage, chronological age, and stage of malignant progression in human epithelial cells.
RESUMO
Droplet microfluidics enables massively-parallel analysis of single cells, biomolecules, and chemicals, making it valuable for high-throughput screens. However, many hydrophobic analytes are soluble in carrier oils, preventing their quantitative analysis with the method. We apply Printed Droplet Microfluidics to construct defined reactions with chemicals and cells incubated under air on an open array. The method interfaces with most bioanalytical tools and retains hydrophobic compounds in compartmentalized reactors, allowing their quantitation.
Assuntos
Bioensaio/métodos , Técnicas Analíticas Microfluídicas/métodos , Óleos/química , Impressão Tridimensional/instrumentação , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/análise , Biologia Sintética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sesquiterpenos/metabolismoRESUMO
Growth factor binding to EGFR drives conformational changes that promote homodimerization and transphosphorylation, followed by adaptor recruitment, oligomerization, and signaling through Ras. Whether specific receptor conformations and oligomerization states are necessary for efficient activation of Ras is unclear. We therefore evaluated the sufficiency of a phosphorylated EGFR dimer to activate Ras without growth factor by developing a chemical-genetic strategy to crosslink and "trap" full-length EGFR homodimers on cells. Trapped dimers become phosphorylated and recruit adaptor proteins at stoichiometry equivalent to that of EGF-stimulated receptors. Surprisingly, these phosphorylated dimers do not activate Ras, Erk, or Akt. In the absence of EGF, phosphorylated dimers do not further oligomerize or reorganize on cell membranes. These results suggest that a phosphorylated EGFR dimer loaded with core signaling adapters is not sufficient to activate Ras and that EGFR ligands contribute to conformational changes or receptor dynamics necessary for oligomerization and efficient signal propagation through the SOS-Ras-MAPK pathway.
Assuntos
Receptores ErbB/metabolismo , Multimerização Proteica , Proteínas ras/metabolismo , Vesículas Revestidas por Clatrina/efeitos dos fármacos , Vesículas Revestidas por Clatrina/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/química , Células HEK293 , Humanos , Ligantes , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Conformação Proteica , Transdução de Sinais/efeitos dos fármacosRESUMO
Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.