Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Oncol ; 63(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37654190

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor affecting adults and remains incurable. The mitochondrial coiled­coil­helix­coiled­coil­helix domain­containing protein 2 (CHCHD2) has been demonstrated to mediate mitochondrial respiration, nuclear gene expression and cell migration; however, evidence of this in GBM is lacking. In the present study, it was hypothesized that CHCHD2 may play a functional role in U87 GBM cells expressing the constitutively active epidermal growth factor receptor variant III (EGFRvIII). The amplification of the CHCHD2 gene was found to be associated with a decreased patient overall and progression­free survival. The CHCHD2 mRNA levels were increased in high­vs. low­grade glioma, IDH­wt GBMs, and in tumor vs. non­tumor tissue. Additionally, CHCHD2 protein expression was greatest in invasive, EGFRvIII­expressing patient­derived samples. The CRISPR­Cas9­mediated knockout of CHCHD2 in EGFRvIII­expressing U87 cells resulted in an altered mitochondrial respiration and glutathione status, in decreased cell growth and invasion under both normoxic and hypoxic conditions, and in an enhanced sensitivity to cytotoxic agents. CHCHD2 was distributed in both the mitochondria and nuclei of U87 and U87vIII cells, and the U87vIII cells exhibited a greater nuclear expression of CHCHD2 compared to isogenic U87 cells. Incubation under hypoxic conditions, serum starvation and the reductive unfolding of CHCHD2 induced the nuclear accumulation of CHCHD2 in both cell lines. Collectively, the findings of the present study indicate that CHCHD2 mediates a variety of GBM characteristics, and highlights mitonuclear retrograde signaling as a pathway of interest in GBM cell biology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Encefálicas/patologia , Hipóxia , Mitocôndrias/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição
2.
Trials ; 24(1): 113, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793105

RESUMO

BACKGROUND: Among all racial/ethnic groups, people who identify as African American/Blacks have the second highest colorectal cancer (CRC) incidence in the USA. This disparity may exist because African American/Blacks, compared to other racial/ethnic groups, have a higher prevalence of risk factors for CRC, including obesity, low fiber consumption, and higher intakes of fat and animal protein. One unexplored, underlying mechanism of this relationship is the bile acid-gut microbiome axis. High saturated fat, low fiber diets, and obesity lead to increases in tumor promoting secondary bile acids. Diets high in fiber, such as a Mediterranean diet, and intentional weight loss may reduce CRC risk by modulating the bile acid-gut microbiome axis. The purpose of this study is to test the impact of a Mediterranean diet alone, weight loss alone, or both, compared to typical diet controls on the bile acid-gut microbiome axis and CRC risk factors among African American/Blacks with obesity. Because weight loss or a Mediterranean diet alone can reduce CRC risk, we hypothesize that weight loss plus a Mediterranean diet will reduce CRC risk the most. METHODS: This randomized controlled lifestyle intervention will randomize 192 African American/Blacks with obesity, aged 45-75 years to one of four arms: Mediterranean diet, weight loss, weight loss plus Mediterranean diet, or typical diet controls, for 6 months (48 per arm). Data will be collected at baseline, mid-study, and study end. Primary outcomes include total circulating and fecal bile acids, taurine-conjugated bile acids, and deoxycholic acid. Secondary outcomes include body weight, body composition, dietary change, physical activity, metabolic risk, circulating cytokines, gut microbial community structure and composition, fecal short-chain fatty acids, and expression levels of genes from exfoliated intestinal cells linked to carcinogenesis. DISCUSSION: This study will be the first randomized controlled trial to examine the effects of a Mediterranean diet, weight loss, or both on bile acid metabolism, the gut microbiome, and intestinal epithelial genes associated with carcinogenesis. This approach to CRC risk reduction may be especially important among African American/Blacks given their higher risk factor profile and increased CRC incidence. TRIAL REGISTRATION: ClinicalTrials.gov NCT04753359 . Registered on 15 February 2021.


Assuntos
Neoplasias Colorretais , Dieta Mediterrânea , Microbioma Gastrointestinal , Humanos , Ácidos e Sais Biliares , Negro ou Afro-Americano , Neoplasias Colorretais/metabolismo , Obesidade/diagnóstico , Obesidade/terapia , Obesidade/complicações , Fatores de Risco , Redução de Peso
3.
Nutr Cancer ; 75(3): 876-889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36625531

RESUMO

Obesity is considered an independent risk factor for colorectal cancer (CRC). Altered nutrient metabolism, particularly changes to digestion and intestinal absorption, may play an important role in the development of CRC. Iron can promote the formation of tissue-damaging and immune-modulating reactive oxygen species. We conducted a crossover, controlled feeding study to examine the effect of three, 3-week diets varying in iron and saturated fat content on the colonic milieu and systemic markers among older females with obesity. Anthropometrics, fasting venous blood and stool were collected before and after each diet. There was a minimum 3-week washout period between diets. Eighteen participants consumed the three diets (72% Black; mean age 60.4 years; mean body mass index 35.7 kg/m2). Results showed no effect of the diets on intestinal inflammation (fecal calprotectin) or circulating iron, inflammation, and metabolic markers. Pairwise comparisons revealed less community diversity between samples (beta diversity, calculated from 16S rRNA amplicon sequences) among participants when consuming a diet low in iron and high in saturated fat vs. when consuming a diet high in iron and saturated fat. More studies are needed to investigate if dietary iron represents a salient target for CRC prevention among individuals with obesity.


Assuntos
Dieta , Microbioma Gastrointestinal , Intestinos , Feminino , Humanos , Pessoa de Meia-Idade , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Inflamação/etiologia , Ferro , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/microbiologia , RNA Ribossômico 16S/genética , Intestinos/microbiologia , Intestinos/fisiologia
4.
Gut Microbes ; 14(1): 2132903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36343662

RESUMO

The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The human liver produces bile acids from cholesterol predominantly in the A/B-cis orientation in which the sterol rings are "kinked", as well as small quantities of A/B-trans oriented "flat" stereoisomers known as "primary allo-bile acids". While the complex multi-step bile acid 7α-dehydroxylation pathway has been well-studied for conversion of "kinked" primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, the enzymatic basis for the formation of "flat" stereoisomers allo-deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three decades. Here, we present a novel mechanism by which Firmicutes generate the "flat" bile acids allo-DCA and allo-LCA. The BaiA1 was shown to catalyze the final reduction from 3-oxo-allo-DCA to allo-DCA and 3-oxo-allo-LCA to allo-LCA. Phylogenetic and metagenomic analyses of human stool samples indicate that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-associated bile acid 5α-reductases recently reported in Bacteroidetes that indirectly generate allo-LCA from 3-oxo-Δ4-LCA. We further map the distribution of baiP and baiJ among Firmicutes in human metagenomes, demonstrating an increased abundance of the two genes in colorectal cancer (CRC) patients relative to healthy individuals.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Animais , Humanos , Firmicutes/metabolismo , Filogenia , Ácido Litocólico/metabolismo , Ácido Desoxicólico/metabolismo
5.
Microbiome ; 10(1): 64, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440042

RESUMO

BACKGROUND: Recent evidence implicates microbial sulfidogenesis as a potential trigger of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur metabolism within the human gut. Microbial sulfidogenesis produces genotoxic hydrogen sulfide (H2S) in the human colon using inorganic (sulfate) and organic (taurine/cysteine/methionine) substrates; however, the majority of studies have focused on sulfate reduction using dissimilatory sulfite reductases (Dsr). RESULTS: Here, we show that genes for microbial sulfur metabolism are more abundant and diverse than previously observed and are statistically associated with CRC. Using ~ 17,000 bacterial genomes from publicly available stool metagenomes, we studied the diversity of sulfur metabolic genes in 667 participants across different health statuses: healthy, adenoma, and carcinoma. Sulfidogenic genes were harbored by 142 bacterial genera and both organic and inorganic sulfidogenic genes were associated with carcinoma. Significantly, the anaerobic sulfite reductase (asr) genes were twice as abundant as dsr, demonstrating that Asr is likely a more important contributor to sulfate reduction in the human gut than Dsr. We identified twelve potential pathways for reductive taurine metabolism and discovered novel genera harboring these pathways. Finally, the prevalence of metabolic genes for organic sulfur indicates that these understudied substrates may be the most abundant source of microbially derived H2S. CONCLUSIONS: Our findings significantly expand knowledge of microbial sulfur metabolism in the human gut. We show that genes for microbial sulfur metabolism in the human gut are more prevalent than previously known, irrespective of health status (i.e., in both healthy and diseased states). Our results significantly increase the diversity of pathways and bacteria that are associated with microbial sulfur metabolism in the human gut. Overall, our results have implications for understanding the role of the human gut microbiome and its potential contributions to the pathogenesis of CRC. Video abstract.


Assuntos
Carcinoma , Neoplasias Colorretais , Microbioma Gastrointestinal , Bactérias , Neoplasias Colorretais/genética , Microbioma Gastrointestinal/genética , Humanos , Sulfatos/metabolismo , Enxofre/metabolismo , Taurina/metabolismo
6.
mSystems ; 7(1): e0117421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35103491

RESUMO

Bile acids (BAs) facilitate nutrient digestion and absorption and act as signaling molecules in a number of metabolic and inflammatory pathways. Expansion of the BA pool and increased exposure to microbial BA metabolites has been associated with increased colorectal cancer (CRC) risk. It is well established that diet influences systemic BA concentrations and microbial BA metabolism. Therefore, consumption of nutrients that reduce colonic exposure to BAs and microbial BA metabolites may be an effective method for reducing CRC risk, particularly in populations disproportionately burdened by CRC. Individuals who identify as Black/African American (AA/B) have the highest CRC incidence and death in the United States and are more likely to live in a food environment with an inequitable access to BA mitigating nutrients. Thus, this review discusses the current evidence supporting diet as a contributor to CRC disparities through BA-mediated mechanisms and relationships between these mechanisms and barriers to maintaining a low-risk diet.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Ácidos e Sais Biliares , Alimentos
7.
Transl Behav Med ; 11(12): 2123-2126, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223908

RESUMO

The COVID-19 pandemic has highlighted the inequitable access to resources, leading to a disproportionate burden of disease in vulnerable communities in the USA. However, these inequities in health outcomes are not limited to COVID-19. Approximately 18% of cancers are related to dietary behaviors and excess body weight. Underserved communities, such as minority racial/ethnic groups living in neighborhoods of low socioeconomic status, experience barriers to healthy eating including lack of access to high-quality healthy foods and higher availability of unhealthy foods and beverages in local retail food outlets. Strikingly, these same populations are more likely to die from cancers related to dietary intake and obesity like colorectal, liver, and pancreatic cancers. To reduce cancer inequities, policy makers can act by supporting programs that incentivize healthy food purchases and improve the local food environment in underserved communities.


Assuntos
COVID-19 , Neoplasias , Humanos , Neoplasias/epidemiologia , Neoplasias/prevenção & controle , Pandemias , Políticas , SARS-CoV-2
8.
J Neuroinflammation ; 17(1): 346, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208156

RESUMO

BACKGROUND: Glioblastoma is the most common and deadly form of primary brain cancer, accounting for more than 13,000 new diagnoses annually in the USA alone. Microglia are the innate immune cells within the central nervous system, acting as a front-line defense against injuries and inflammation via a process that involves transformation from a quiescent to an activated phenotype. Crosstalk between GBM cells and microglia represents an important axis to consider in the development of tissue engineering platforms to examine pathophysiological processes underlying GBM progression and therapy. METHODS: This work used a brain-mimetic hydrogel system to study patient-derived glioblastoma specimens and their interactions with microglia. Here, glioblastoma cells were either cultured alone in 3D hydrogels or in co-culture with microglia in a manner that allowed secretome-based signaling but prevented direct GBM-microglia contact. Patterns of GBM cell invasion were quantified using a three-dimensional spheroid assay. Secretome and transcriptome (via RNAseq) were used to profile the consequences of GBM-microglia interactions. RESULTS: Microglia displayed an activated phenotype as a result of GBM crosstalk. Three-dimensional migration patterns of patient-derived glioblastoma cells showed invasion was significantly decreased in response to microglia paracrine signaling. Potential molecular mechanisms underlying with this phenotype were identified from bioinformatic analysis of secretome and RNAseq data. CONCLUSION: The data demonstrate a tissue engineered hydrogel platform can be used to investigate crosstalk between immune cells of the tumor microenvironment related to GBM progression. Such multi-dimensional models may provide valuable insight to inform therapeutic innovations to improve GBM treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Gelatina/administração & dosagem , Glioblastoma/metabolismo , Hidrogéis/administração & dosagem , Microglia/metabolismo , Microambiente Tumoral/fisiologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular , Técnicas de Cocultura , Feminino , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Microglia/efeitos dos fármacos , Invasividade Neoplásica/patologia , Engenharia Tecidual/métodos , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Contemp Clin Trials Commun ; 19: 100611, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32695922

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer and second leading cause of cancer death in the United States. Recent evidence has linked a high fat and animal protein diet and microbial metabolism of host bile acids as environmental risk factors for CRC development. We hypothesize that the primary bile salt taurocholic acid (TCA) is a key, diet-controlled metabolite whose use by bacteria yields a carcinogen and tumor-promoter, respectively. The work is motivated by our published data indicating hydrogen sulfide (H2S) and secondary bile acid production by colonic bacteria, serve as environmental insults contributing to CRC risk. The central aim of this study is to test whether a diet high in animal protein and saturated fat increases abundance of bacteria that generate H2S and pro-inflammatory secondary bile acids in African Americans (AAs) at high risk for CRC. Our prospective, randomized, crossover feeding trial will examine two microbial mechanisms by which an animal-based diet may support the growth of TCA metabolizing bacteria. Each subject will receive two diets in a crossover design- an animal-based diet, rich in taurine and saturated fat, and a plant-based diet, low in taurine and saturated fat. A mediation model will be used to determine the extent to which diet (independent variable) and mucosal markers of CRC risk and DNA damage (dependent variables) are explained by colonic bacteria and their functions (mediator variables). This research will generate novel information targeted to develop effective dietary interventions that may reduce the unequal CRC burden in AAs.

10.
Am J Clin Nutr ; 111(2): 406-419, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851298

RESUMO

BACKGROUND: Alaska Native (AN) people have the world's highest recorded incidence of sporadic colorectal cancer (CRC) (∼91:100,000), whereas rural African (RA) people have the lowest risk (<5:100,000). Previous data supported the hypothesis that diet affected CRC risk through its effects on the colonic microbiota that produce tumor-suppressive or -promoting metabolites. OBJECTIVES: We investigated whether differences in these metabolites may contribute to the high risk of CRC in AN people. METHODS: A cross-sectional observational study assessed dietary intake from 32 AN and 21 RA healthy middle-aged volunteers before screening colonoscopy. Analysis of fecal microbiota composition by 16S ribosomal RNA gene sequencing and fecal/urinary metabolites by 1H-NMR spectroscopy was complemented with targeted quantification of fecal SCFAs, bile acids, and functional microbial genes. RESULTS: Adenomatous polyps were detected in 16 of 32 AN participants, but not found in RA participants. The AN diet contained higher proportions of fat and animal protein and less fiber. AN fecal microbiota showed a compositional predominance of Blautia and Lachnoclostridium, higher microbial capacity for bile acid conversion, and low abundance of some species involved in saccharolytic fermentation (e.g., Prevotellaceae, Ruminococcaceae), but no significant lack of butyrogenic bacteria. Significantly lower concentrations of tumor-suppressive butyrate (22.5 ± 3.1 compared with 47.2 ± 7.3 SEM µmol/g) coincided with significantly higher concentrations of tumor-promoting deoxycholic acid (26.7 ± 4.2 compared with 11 ± 1.9 µmol/g) in AN fecal samples. AN participants had lower quantities of fecal/urinary metabolites than RA participants and metabolite profiles correlated with the abundance of distinct microbial genera in feces. The main microbial and metabolic CRC-associated markers were not significantly altered in AN participants with adenomatous polyps. CONCLUSIONS: The low-fiber, high-fat diet of AN people and exposure to carcinogens derived from diet or environment are associated with a tumor-promoting colonic milieu as reflected by the high rates of adenomatous polyps in AN participants.


Assuntos
Bactérias/metabolismo , População Negra , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/fisiologia , Adulto , Bactérias/classificação , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Estudos Transversais , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , População Rural
11.
Gut ; 68(9): 1624-1632, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31092590

RESUMO

OBJECTIVE: In this consensus statement, an international panel of experts deliver their opinions on key questions regarding the contribution of the human microbiome to carcinogenesis. DESIGN: International experts in oncology and/or microbiome research were approached by personal communication to form a panel. A structured, iterative, methodology based around a 1-day roundtable discussion was employed to derive expert consensus on key questions in microbiome-oncology research. RESULTS: Some 18 experts convened for the roundtable discussion and five key questions were identified regarding: (1) the relevance of dysbiosis/an altered gut microbiome to carcinogenesis; (2) potential mechanisms of microbiota-induced carcinogenesis; (3) conceptual frameworks describing how the human microbiome may drive carcinogenesis; (4) causation versus association; and (5) future directions for research in the field.The panel considered that, despite mechanistic and supporting evidence from animal and human studies, there is currently no direct evidence that the human commensal microbiome is a key determinant in the aetiopathogenesis of cancer. The panel cited the lack of large longitudinal, cohort studies as a principal deciding factor and agreed that this should be a future research priority. However, while acknowledging gaps in the evidence, expert opinion was that the microbiome, alongside environmental factors and an epigenetically/genetically vulnerable host, represents one apex of a tripartite, multidirectional interactome that drives carcinogenesis. CONCLUSION: Data from longitudinal cohort studies are needed to confirm the role of the human microbiome as a key driver in the aetiopathogenesis of cancer.


Assuntos
Carcinogênese , Microbiota , Neoplasias/microbiologia , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Carcinogênese/genética , Carcinogênese/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Dano ao DNA , Disbiose/complicações , Disbiose/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Humanos , Inflamação/microbiologia , Neoplasias/genética , Neoplasias/imunologia
12.
Biomater Sci ; 6(4): 854-862, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29485655

RESUMO

Glioblastoma (GBM) is the most common, aggressive, and deadly form of adult brain cancer, and is associated with a short survival rate (median 12-15 months, 5+ year less than 5%). The complex tumor microenvironment includes matrix transitions at the tumor margin, such as gradations in hyaluronic acid (HA). In addition, metabolic stress induced by decreased oxygen content across the tumor may contribute to tumor progression. However, cross-talk between matrix composition and metabolic stress remains unclear. In this study, we fabricated an in vitro brain memetic HA-decorated gelatin hydrogel platform incorporating variable oxygen concentrations to mimic intra-tumoral hypoxia. We observed that EGFR status (wildtype vs. a constitutively active EGFRvIII mutant) of U87 GBM cells affected proliferation and metabolic activity in response to hypoxia and matrix-bound HA. The use of an invasion assay revealed that invasion was significantly enhanced in both cell types under hypoxia. Moreover, we observed compensatory secretion of soluble HA in cases of enhanced GBM cell invasion, consistent with our previous findings using other GBM cell lines. Interestingly, U87 GBM cells adapted to hypoxia by shifting toward a more anaerobic metabolic state, a mechanism that may contribute to GBM cell invasion. Collectively, these data demonstrate that the use of a three-dimensional hydrogel provides a robust method to study the impact of matrix composition and metabolic challenges on GBM cell invasion, a key factor contributing to the most common, aggressive, and deadly form of adult brain cancer.


Assuntos
Materiais Biomiméticos/química , Proliferação de Células , Glioblastoma/metabolismo , Ácido Hialurônico/metabolismo , Oxigênio/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Gelatina/química , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Oxigênio/química
13.
Microsc Res Tech ; 81(2): 115-128, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29131445

RESUMO

Mitochondrial morphology is regulated by continuous fusion-and-fission events that are essential for maintaining normal function. Despite the prominence of mitochondrial function in energy generation and cell signaling, understanding of processes of fusion and fission dynamics has been hampered by the lack of high-resolution optical systems that accommodate live-cell imaging. We have examined different confocal modalities in terms of resolution and signal-to-noise ratio (SNR) in a point scanning confocal microscope with Airyscan super-resolution (AS-SR). Results indicated that Airyscan (AS) provided speed, super-resolution, and high SNR. This modality was then used for monitoring mitochondrial dynamics in live tumor cells modified to harbor green-fluorescent protein localized to mitochondria. We then compared regular AS and fast-Airyscan modalities in terms of gentleness on the live-cell samples. The fast mode provided unprecedented imaging speed that permits monitoring dynamics both in 2D and also in three-dimensional dataset with time lapses (4D). Alterations to the mitochondrial network in U87 glioblastoma cells occurred within seconds and the cells were not affected by modest inhibition of fission. The super-resolution permitted quantitative measurements of mitochondrial diameter with a precision that enabled detection of significant differences in mitochondrial morphology between cell lines. We have observed swelling of mitochondrial tubules in A549 lung cancer cells after 2 hr treatment with deoxynyboquinone, an ROS-generating pharmacologic drug. We also tested different 3D analytical parameters and how they can affect morphometric quantitation. The AS-SR imaging enabled high-speed imaging of mitochondrial dynamics without the compromise to cell morphology or viability that is common with conventional fluorescence imaging due to photo-oxidation.


Assuntos
Microscopia de Fluorescência/métodos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Imagem com Lapso de Tempo/métodos , Células A549 , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Epiteliais/ultraestrutura , Glioblastoma , Proteínas de Fluorescência Verde , Células HCT116 , Humanos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Células Vero
14.
Biomicrofluidics ; 11(5): 054116, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29152027

RESUMO

Regions of hypoxia are common in solid tumors and are associated with enhanced malignancy, metastasis, and chemo/radio resistance. Real-time hypoxic cellular experimentation is challenging due to the constant need for oxygen control. Most microfluidic platforms developed thus far for hypoxic cell studies are burdened by complex design parameters and are difficult to use for uninitiated investigators. However, open-well microfluidic platforms enable short and long term hypoxic cell studies with an ease of use workflow. Specifically, open-well platforms enable manipulation and addition of cells, media, and reagents using a micropipette for hypoxic cell studies in tunable dissolved oxygen concentrations as low 0.3 mg/l. We analyzed design considerations for open-well microfluidic platforms such as media height, membrane thickness, and impermeable barriers to determine their effects on the amount of dissolved oxygen within the platform. The oxygen concentration was determined by experimental measurements and computational simulations. To examine cell behavior under controlled oxygen conditions, hypoxia-induced changes to hypoxia inducible factor activity and the mitochondrial redox environment were studied. A fluorescent reporter construct was used to monitor the stabilization of hypoxia inducible factors 1α and 2α throughout chronic hypoxia. Reporter construct fluorescence intensity inversely correlated with dissolved oxygen in the medium, as expected. Additionally, the glutathione redox poise of the mitochondrial matrix in living cancer cells was monitored throughout acute hypoxia with a genetically encoded redox probe and was observed to undergo a reductive response to hypoxia. Overall, these studies validate an easy to use open-well platform suitable for studying complex cell behaviors in hypoxia.

15.
J Nutr Biochem ; 43: 18-26, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193579

RESUMO

Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 µM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 µM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 µM) significantly elevated TEER at 6-24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 µM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1.


Assuntos
Mucosa Intestinal/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Zinco/farmacologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Suplementos Nutricionais , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/citologia , Intestinos/efeitos dos fármacos , Morfolinas/farmacologia , Ocludina/genética , Ocludina/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
16.
Gut ; 66(11): 1983-1994, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28153960

RESUMO

OBJECTIVE: Colorectal cancer (CRC) incidence is higher in African Americans (AAs) compared with non-Hispanic whites (NHWs). A diet high in animal protein and fat is an environmental risk factor for CRC development. The intestinal microbiota is postulated to modulate the effects of diet in promoting or preventing CRC. Hydrogen sulfide, produced by autochthonous sulfidogenic bacteria, triggers proinflammatory pathways and hyperproliferation, and is genotoxic. We hypothesised that sulfidogenic bacterial abundance in colonic mucosa may be an environmental CRC risk factor that distinguishes AA and NHW. DESIGN: Colonic biopsies from uninvolved or healthy mucosa from CRC cases and tumour-free controls were collected prospectively from five medical centres in Chicago for association studies. Sulfidogenic bacterial abundance in uninvolved colonic mucosa of AA and NHW CRC cases was compared with normal mucosa of AA and NHW controls. In addition, 16S rDNA sequencing was performed in AA cases and controls. Correlations were examined among bacterial targets, race, disease status and dietary intake. RESULTS: AAs harboured a greater abundance of sulfidogenic bacteria compared with NHWs regardless of disease status. Bilophila wadsworthia-specific dsrA was more abundant in AA cases than controls. Linear discriminant analysis of 16S rRNA gene sequences revealed five sulfidogenic genera that were more abundant in AA cases. Fat and protein intake and daily servings of meat were significantly higher in AAs compared with NHWs, and multiple dietary components correlated with a higher abundance of sulfidogenic bacteria. CONCLUSIONS: These results implicate sulfidogenic bacteria as a potential environmental risk factor contributing to CRC development in AAs.


Assuntos
Adenocarcinoma/microbiologia , Negro ou Afro-Americano , Colo/microbiologia , Neoplasias Colorretais/microbiologia , Mucosa Intestinal/microbiologia , Bactérias Redutoras de Enxofre/isolamento & purificação , População Branca , Adenocarcinoma/etnologia , Adenocarcinoma/etiologia , Adulto , Idoso , Estudos de Casos e Controles , Chicago , Neoplasias Colorretais/etnologia , Neoplasias Colorretais/etiologia , Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Proteínas Alimentares/efeitos adversos , Feminino , Disparidades nos Níveis de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco
17.
Biochem Biophys Res Commun ; 483(1): 680-686, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-27986568

RESUMO

Deoxynyboquinone (DNQ), a potent novel quinone-based antineoplastic agent, selectively kills solid cancers with overexpressed cytosolic NAD(P)H:quinone oxidoreductase-1 (NQO1) via excessive ROS production. A genetically encoded redox-sensitive probe was used to monitor intraorganellar glutathione redox potentials (EGSH) as a direct indicator of cellular oxidative stress following chemotherapeutic administration. Beta-lapachone (ß-lap) and DNQ-induced spatiotemporal redox responses were monitored in human lung A549 and pancreatic MIA-PaCa-2 adenocarcinoma cells incubated with or without dicumarol and ES936, potent NQO1 inhibitors. Immediate oxidation of EGSH in both the cytosol and mitochondrial matrix was observed in response to DNQ and ß-lap. The DNQ-induced cytosolic oxidation was fully prevented with NQO1 inhibition, whereas mitochondrial oxidation in A549 was NQO1-independent in contrast to MIA-PaCa-2 cells. However, at pharmacologic concentrations of ß-lap both quinone-based substrates directly oxidized the redox probe, a possible sign of off-target reactivity with cellular thiols. Together, these data provide new evidence that DNQ's direct and discerning NQO1 substrate specificity underlies its pharmacologic potency, while ß-lap elicits off-target responses at its effective doses.


Assuntos
Antineoplásicos/farmacologia , Glutationa/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quinonas/farmacologia , Técnicas Biossensoriais , Linhagem Celular Tumoral , Citosol/efeitos dos fármacos , Citosol/metabolismo , Dicumarol/farmacologia , Corantes Fluorescentes/análise , Glutarredoxinas/análise , Glutarredoxinas/genética , Glutationa/análise , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Indolquinonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Imagem Molecular , Sondas Moleculares/genética , Terapia de Alvo Molecular , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Naftoquinonas/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato
18.
Gut Microbes ; 7(3): 201-15, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27003186

RESUMO

Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively.


Assuntos
Colagogos e Coleréticos/metabolismo , Neoplasias do Colo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Ácido Taurocólico/metabolismo , Bile/metabolismo , Ácido Desoxicólico/metabolismo , Detergentes/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Mutagênicos/metabolismo
19.
Mucosal Immunol ; 9(4): 1039-1050, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26555707

RESUMO

Cystic fibrosis (CF) patients battle life-long pulmonary infections with the respiratory pathogen Pseudomonas aeruginosa (PA). An overabundance of mucus in CF airways provides a favorable niche for PA growth. When compared with that of non-CF individuals, mucus of CF airways is enriched in sialyl-Lewis(x), a preferred binding receptor for PA. Notably, the levels of sialyl-Lewis(x) directly correlate with infection severity in CF patients. However, the mechanism by which PA causes increased sialylation remains uncharacterized. In this study, we examined the ability of PA virulence factors to modulate sialyl-Lewis(x) modification in airway mucins. We found pyocyanin (PCN) to be a potent inducer of sialyl-Lewis(x) in both mouse airways and in primary and immortalized CF and non-CF human airway epithelial cells. PCN increased the expression of C2/4GnT and ST3Gal-IV, two of the glycosyltransferases responsible for the stepwise biosynthesis of sialyl-Lewis(x), through a tumor necrosis factor (TNF)-α-mediated phosphoinositol-specific phospholipase C (PI-PLC)-dependent pathway. Furthermore, PA bound more efficiently to airway epithelial cells pre-exposed to PCN in a flagellar cap-dependent manner. Importantly, antibodies against sialyl-Lewis(x) and anti-TNF-α attenuated PA binding. These results indicate that PA secretes PCN to induce a favorable environment for chronic colonization of CF lungs by increasing the glycosylation of airway mucins with sialyl-Lewis(x).


Assuntos
Fibrose Cística/imunologia , Mucinas/metabolismo , Oligossacarídeos/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Piocianina/metabolismo , Mucosa Respiratória/metabolismo , Animais , Aderência Bacteriana , Linhagem Celular Tumoral , Fibrose Cística/microbiologia , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Respiratória/patologia , Antígeno Sialil Lewis X , Sialiltransferases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosfolipases Tipo C/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase
20.
Am J Physiol Cell Physiol ; 309(2): C81-91, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25994788

RESUMO

Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration.


Assuntos
Antioxidantes/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Animais , Técnicas Biossensoriais , Células CHO , Cricetulus , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Células HCT116 , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Suínos , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA