Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am Heart J ; 226: 114-126, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531501

RESUMO

BACKGROUND: Fabry disease (FD) is a treatable cause of hypertrophic cardiomyopathy (HCM). We aimed to determine the independent predictors of FD and to define a clinically useful strategy to discriminate FD among HCM. METHODS: Multicenter study including 780 patients with the ESC definition of HCM. FD screening was performed by enzymatic assay in males and genetic testing in females. Multivariate regression analysis identified independent predictors of FD in HCM. A discriminant function analysis defined a score based on the weighted combination of these predictors. RESULTS: FD was found in 37 of 780 patients with HCM (4.7%): 31 with p.F113L mutation due to a founder effect; and 6 with other variants (p.C94S; p.M96V; p.G183V; p.E203X; p.M290I; p.R356Q/p.G360R). FD prevalence in HCM adjusted for the founder effect was 0.9%. Symmetric HCM (OR 3.464, CI95% 1.151-10.430), basal inferolateral late gadolinium enhancement (LGE) (OR 10.677, CI95% 3.633-31.380), bifascicular block (OR 10.909, CI95% 2.377-50.059) and ST-segment depression (OR 4.401, CI95% 1.431-13.533) were independent predictors of FD in HCM. The score ID FABRY-HCM [-0.729 + (2.781xBifascicular block) + (0.590xST depression) + (0.831xSymmetric HCM) + (2.130xbasal inferolateral LGE)] had a negative predictive value of 95.8% for FD, with a cut-off of 1.0, meaning that, in the absence of both bifascicular block and basal inferolateral LGE, FD is a less probable cause of HCM, being more appropriate to perform HCM gene panel than targeted FD screening. CONCLUSION: FD prevalence in HCM was 0.9%. Bifascicular block and basal inferolateral LGE were the most powerful predictors of FD in HCM. In their absence, HCM gene panel is the most appropriate step in etiological study of HCM.


Assuntos
Cardiomiopatia Hipertrófica/etiologia , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Adulto , Idoso , Doença de Fabry/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
2.
Mol Genet Metab ; 129(2): 150-160, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31519519

RESUMO

BACKGROUND: Knowledge on clinical profiles of late-onset phenotypes of Fabry disease (FD) is essential to better define their natural history. Our study aims to demonstrate a founder effect of FD due to the GLA gene mutation c.337T>C (p.F113L) in the Portuguese region of Guimarães; and to characterize the clinical profile of this late-onset phenotype in a large cohort of genetically related adult patients, living in the same region. METHODS AND RESULTS: FD screening was performed in 150 adult patients with hypertrophic cardiomyopathy (HCM) and found 25 Fabry patients (16.6%). The p.F113L mutation was found in 21 of them, leading to a genealogy study and haplotype analysis of the p.F113L patients. Genealogy research revealed a 12-generation family tree with a common ancestor to p.F113L patients, suggesting a founder effect that was supported by haplotype findings. Pedigree analysis was performed and 120 consecutive p.F113L patients underwent a predefined diagnostic evaluation of FD multiorgan involvement. This late-onset phenotype was characterized by common and/or potentially severe cardiac manifestations (left ventricular hypertrophy 40.8%, atrial fibrillation 5%, non-sustained ventricular tachycardia 12.5%, atrioventricular block 18.3%, bifascicular block 13.4%). Extracardiac manifestations included albuminuria>30 mg/24 h 36.1%, chronic kidney disease≥G3 7.6%, brain white matter lesions 54.4%, stroke 3.3%, sensorineural deafness 44.5%, cornea verticillata 13.9%. Plasma lyso-GB3 was undetectable in females, regardless of clinical manifestations. CONCLUSION: A founder effect of FD due to p.F113L mutation was documented by genealogy and genetics in a Portuguese region. In this late-onset phenotype, although cardiac manifestations carry the highest prognostic impact, extracardiac involvement is common.


Assuntos
Doença de Fabry/genética , Efeito Fundador , Mutação , Fenótipo , alfa-Galactosidase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cardiomiopatia Hipertrófica/complicações , Estudos de Coortes , Feminino , Humanos , Transtornos de Início Tardio , Masculino , Pessoa de Meia-Idade , Portugal , Adulto Jovem
3.
J Parkinsons Dis ; 10(1): 141-152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31594250

RESUMO

BACKGROUND: Sporadic Parkinson's disease (PD) patients have lower α-galactosidase A (α-GAL A) enzymatic activity and Fabry disease (FD) patients potentially carry an increased risk of PD. OBJECTIVE: Determination of PD prevalence in FD and clinical, biochemical and vascular neuroimaging description of FD pedigrees with concomitant PD. METHODS: Clinical screening for PD in 229 FD patients belonging to 31 families, harbouring GLA gene mutation p.F113L, and subsequent pedigree analysis. Gender-stratified comparison of FD+/PD+ patients with their family members with FD but without PD (FD+/PD-) regarding Mainz scores, plasma & leukocytes α-GAL A enzymatic activity, urinary Gb3 and plasma Lyso-Gb3, vascular brain neuroimaging. RESULTS: Prevalence of PD in FD was 1.3% (3/229) (3% in patients aged ≥50 years). Three FD patients, one female (73 years old) (P1) and two males (60 and 65 years old) (P2 and P3), three different pedigrees, presented akinetic-rigid PD, with weak response to levodopa (16% - 36%), and dopaminergic deficiency on 18F-DOPA PET. No pathogenic mutations were found in a PD gene panel. FD+/PD+ patients had worse clinical severity of FD (above upper 75% IQR in Mainz scores), and cortico-subcortical white matter/small vessel lesions. P3 patient was under enzyme therapy, started 1 year before PD diagnosis. P2-P3 patients had higher leucocyte α-GAL A activity (2,2-3 vs.1,0 (median)(nmol/h/mg)). CONCLUSION: We have shown a high prevalence of PD in a late-onset phenotype of FD, presenting high cerebrovascular burden and weak response to levodopa. Further studies will untangle how much of this PD phenotype is due to Gb3 deposition versus cerebrovascular lesions in the nigro-striatal network.


Assuntos
Encéfalo/diagnóstico por imagem , Doença de Fabry , Glicolipídeos/metabolismo , Leucócitos/enzimologia , Doença de Parkinson , Esfingolipídeos/metabolismo , alfa-Galactosidase/metabolismo , Adulto , Idoso , Estudos de Coortes , Comorbidade , Doença de Fabry/diagnóstico por imagem , Doença de Fabry/enzimologia , Doença de Fabry/epidemiologia , Doença de Fabry/fisiopatologia , Feminino , Glicolipídeos/sangue , Glicolipídeos/urina , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/enzimologia , Doença de Parkinson/epidemiologia , Doença de Parkinson/fisiopatologia , Linhagem , Fenótipo , Prevalência , Esfingolipídeos/sangue , Esfingolipídeos/urina , alfa-Galactosidase/sangue , alfa-Galactosidase/genética
4.
Int J Mol Sci ; 20(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586924

RESUMO

Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.


Assuntos
Biomarcadores/metabolismo , Doenças por Armazenamento dos Lisossomos/diagnóstico , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Espumosas/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Glicoproteínas de Membrana/química , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Células Mieloides/metabolismo , Fagocitose
5.
Cardiology ; 137(2): 67-73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152533

RESUMO

We report on the clinical, biochemical, and genetic findings of a large family with the classical phenotype of Fabry disease due to the novel nonsense mutation c.607G>T (p.E203X) of the GLA gene, which occurs in the active site of the α-galactosidase A enzyme. This report highlights that (i) Fabry disease diagnosis should be considered in all cases of unexplained left ventricular hypertrophy (LVH), even in its milder forms; (ii) a complete evaluation of patients with unexplained LVH is important to find diagnostic red flags of treatable causes of LVH, such as Fabry disease; (iii) cascade family screening is paramount to the earlier diagnosis and treatment of other affected family members; and (iv) the Fabry disease phenotype is highly variable in heterozygote females, even within the same family.


Assuntos
Doença de Fabry/genética , Doença de Fabry/fisiopatologia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , alfa-Galactosidase/genética , Adulto , Códon sem Sentido , Ecocardiografia , Feminino , Heterozigoto , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Fatores Sexuais , Adulto Jovem
6.
FEBS Open Bio ; 6(9): 902-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27642553

RESUMO

Gaucher disease is caused by inherited deficiency of lysosomal glucocerebrosidase. Proteome analysis of laser-dissected splenic Gaucher cells revealed increased amounts of glycoprotein nonmetastatic melanoma protein B (gpNMB). Plasma gpNMB was also elevated, correlating with chitotriosidase and CCL18, which are established markers for human Gaucher cells. In Gaucher mice, gpNMB is also produced by Gaucher cells. Correction of glucocerebrosidase deficiency in mice by gene transfer or pharmacological substrate reduction reverses gpNMB abnormalities. In conclusion, gpNMB acts as a marker for glucosylceramide-laden macrophages in man and mouse and gpNMB should be considered as candidate biomarker for Gaucher disease in treatment monitoring.

7.
J Lipid Res ; 55(1): 138-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212238

RESUMO

Lysosomal integral membrane protein-2 (LIMP2) mediates trafficking of glucocerebrosidase (GBA) to lysosomes. Deficiency of LIMP2 causes action myoclonus-renal failure syndrome (AMRF). LIMP2-deficient fibroblasts virtually lack GBA like the cells of patients with Gaucher disease (GD), a lysosomal storage disorder caused by mutations in the GBA gene. While GD is characterized by the presence of glucosylceramide-laden macrophages, AMRF patients do not show these. We studied the fate of GBA in relation to LIMP2 deficiency by employing recently designed activity-based probes labeling active GBA molecules. We demonstrate that GBA is almost absent in lysosomes of AMRF fibroblasts. However, white blood cells contain considerable amounts of residual enzyme. Consequently, AMRF patients do not acquire lipid-laden macrophages and do not show increased plasma levels of macrophage markers, such as chitotriosidase, in contrast to GD patients. We next investigated the consequences of LIMP2 deficiency with respect to plasma glycosphingolipid levels. Plasma glucosylceramide concentration was normal in the AMRF patients investigated as well as in LIMP2-deficient mice. However, a marked increase in the sphingoid base, glucosylsphingosine, was observed in AMRF patients and LIMP2-deficient mice. Our results suggest that combined measurements of chitotriosidase and glucosylsphingosine can be used for convenient differential laboratory diagnosis of GD and AMRF.


Assuntos
Epilepsias Mioclônicas Progressivas/diagnóstico , Animais , Células Cultivadas , Ensaios Enzimáticos , Fibroblastos/enzimologia , Imunofluorescência , Corantes Fluorescentes/química , Glucosilceramidase/metabolismo , Glucosilceramidas/metabolismo , Humanos , Leucócitos/enzimologia , Proteínas de Membrana Lisossomal/deficiência , Macrófagos/enzimologia , Camundongos , Epilepsias Mioclônicas Progressivas/enzimologia , Psicosina/análogos & derivados , Psicosina/metabolismo , Receptores Depuradores/deficiência
8.
Nucleic Acids Res ; 41(6): e73, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23325845

RESUMO

Secondary structure of messenger RNA plays an important role in the bio-synthesis of proteins. Its negative impact on translation can reduce the yield of protein by slowing or blocking the initiation and movement of ribosomes along the mRNA, becoming a major factor in the regulation of gene expression. Several algorithms can predict the formation of secondary structures by calculating the minimum free energy of RNA sequences, or perform the inverse process of obtaining an RNA sequence for a given structure. However, there is still no approach to redesign an mRNA to achieve minimal secondary structure without affecting the amino acid sequence. Here we present the first strategy to optimize mRNA secondary structures, to increase (or decrease) the minimum free energy of a nucleotide sequence, without changing its resulting polypeptide, in a time-efficient manner, through a simplistic approximation to hairpin formation. Our data show that this approach can efficiently increase the minimum free energy by >40%, strongly reducing the strength of secondary structures. Applications of this technique range from multi-objective optimization of genes by controlling minimum free energy together with CAI and other gene expression variables, to optimization of secondary structures at the genomic level.


Assuntos
Algoritmos , RNA Mensageiro/química , Animais , Drosophila melanogaster/genética , Conformação de Ácido Nucleico
9.
Cardiology ; 119(3): 155-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21952291

RESUMO

We report a clinical case of a young female with Fabry disease but without left ventricular hypertrophy, which fulfills the diagnostic criteria of left ventricular noncompaction (LVNC). To our knowledge, this is the first report of LVNC in a patient with Fabry disease. The possibility of an overdiagnosis of LVNC is discussed based on the limitations of the current diagnostic criteria. This case was further investigated by genetic analysis, which came to demonstrate the limited usefulness of genetic testing in the diagnosis of LVNC. Assuming a true trabecular pattern of LVNC, the hypothesis that the same patient has two unrelated and rare conditions, although possible, is unlikely. The genetic and clinical heterogeneity of LVNC is discussed and supports, along with this clinical case, the hypothesis that LVNC is a morphological expression of different diseases rather than a distinct cardiomyopathy. Accordingly, LVNC could be a rare cardiac manifestation of Fabry disease.


Assuntos
Erros de Diagnóstico , Doença de Fabry/diagnóstico , Miocárdio Ventricular não Compactado Isolado/diagnóstico , Adulto , Ecocardiografia Doppler em Cores/métodos , Doença de Fabry/genética , Feminino , Seguimentos , Humanos , Miocárdio Ventricular não Compactado Isolado/genética , Imageamento por Ressonância Magnética/métodos , Doenças Raras , Medição de Risco , Sensibilidade e Especificidade
10.
BMC Med Genet ; 11: 19, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20122163

RESUMO

BACKGROUND: Fabry disease (FD), an X-linked lysosomal storage disorder, is caused by a reduced activity of the lysosomal enzyme alpha-galactosidase A. The disorder ultimately leads to organ damage (including renal failure) in males and females. However, heterozygous females usually present a milder phenotype with a later onset and a slower progression. METHODS: A combined enzymatic and genetic strategy was used, measuring the activity of alpha-galactosidase A and genotyping the alpha-galactosidase A gene (GLA) in dried blood samples (DBS) of 911 patients undergoing haemodialysis in centers across Spain. RESULTS: GLA alterations were found in seven unrelated patients (4 males and 3 females). Two novel mutations (p.Gly346AlafsX347 and p.Val199GlyfsX203) were identified as well as a previously described mutation, R118C. The R118C mutation was present in 60% of unrelated patients with GLA causal mutations. The D313Y alteration, considered by some authors as a pseudo-deficiency allele, was also found in two out of seven patients. CONCLUSIONS: Excluding the controversial D313Y alteration, FD presents a frequency of one in 182 individuals (0.55%) within this population of males and females undergoing haemodialysis. Moreover, our findings suggest that a number of patients with unexplained and atypical symptoms of renal disease may have FD. Screening programmes for FD in populations of individuals presenting severe kidney dysfunction, cardiac alterations or cerebrovascular disease may lead to the diagnosis of FD in those patients, the study of their families and eventually the implementation of a specific therapy.


Assuntos
Doença de Fabry/genética , alfa-Galactosidase/genética , Adulto , Idoso de 80 Anos ou mais , Alelos , Substituição de Aminoácidos , Doença de Fabry/enzimologia , Doença de Fabry/epidemiologia , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Diálise Renal , Espanha , alfa-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA