Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Methods Mol Biol ; 2764: 279-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393601

RESUMO

Embedded extrusion 3D bioprinting is a rapidly emerging additive manufacturing methodology that provides a precise spatial deposition of synthetic or natural-origin low-viscosity bioinks during the extrusion printing process. Such a strategy has to date unlocked the freeform extrusion biofabrication of complex micro-to-macro-scale living architectures for numerous applications, including tissue engineering and in vitro disease modeling. In this chapter, we describe a suspension bioprinting methodology leveraging a continuous viscoelastic biopolymer supporting bath functionalized with divalent calcium cations to enable a rapid processing of user-defined bioinks toward architecturally complex 3D in vitro tumor models. This highly simple and cost-effective viscoelastic supporting bath enables a full freeform biofabrication of cell-laden 3D tumor-mimetic architectures that exhibit structural stability in culture post-printing. The cytocompatibility of the supporting bath, its ease of removal from biofabricated living constructs, and its adaptability for processing different ECM-mimetic bioinks open avenues for multi-scale fabrication of numerous types of physiomimetic 3D tumor models for preclinical screening of candidate therapeutics.


Assuntos
Bioimpressão , Neoplasias , Humanos , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Biomimética , Neoplasias/terapia , Alicerces Teciduais/química , Hidrogéis/química
2.
Nanoscale Horiz ; 9(3): 334-364, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38204336

RESUMO

Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Técnicas de Cultura de Células , Modelos Biológicos , Microambiente Tumoral
3.
Biomolecules ; 13(10)2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37892208

RESUMO

The androgens/androgen receptor (AR) axis is the main therapeutic target in prostate cancer (PCa). However, while initially responsive, a subset of tumors loses AR expression through mechanisms putatively associated with epigenetic modifications. In this study, we assessed the link between the presence of CpG methylation in the 5'UTR and promoter regions of AR and loss of AR expression. Hence, we characterized and compared the methylation signature at CpG resolution of these regulatory regions in vitro, both at basal levels and following treatment with 5-aza-2-deoxycytidine (DAC) alone, or in combination with Trichostatin A (TSA). Our results showed heterogeneity in the methylation signature of AR negative cell lines and pinpointed the proximal promoter region as the most consistently methylated site in DU-145. Furthermore, this region was extremely resistant to the demethylating effects of DAC and was only significantly demethylated upon concomitant treatment with TSA. Nevertheless, no AR re-expression was detected at the mRNA or protein level. Importantly, after treatment, there was a significant increase in repressive histone marks at AR region 1 in DU-145 cells. Altogether, our data indicate that AR region 1 genomic availability is crucial for AR expression and that the inhibition of histone methyltransferases might hold promise for AR re-expression.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Metilação de DNA , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica
4.
Vet Sci ; 10(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37368765

RESUMO

Breast cancer is one of the most common and well-known types of cancer among women worldwide and is the most frequent neoplasm in intact female dogs. Female dogs are considered attractive models or studying spontaneous breast cancer, whereas female rats are currently the most widely used animal models for breast cancer research in the laboratory context. Both female dogs and female rats have contributed to the advancement of scientific knowledge in this field, and, in a "One Health" approach, they have allowed broad understanding of specific biopathological pathways, influence of environmental factors and screening/discovery of candidate therapies. This review aims to clearly showcase the similarities and differences among woman, female dog and female rat concerning to anatomical, physiological and histological features of the mammary gland and breast/mammary cancer epidemiology, in order to better portray breast tumorigenesis, and to ensure appropriate conclusions and extrapolation of results among species. We also discuss the major aspects that stand out in these species. The mammary glands of female dogs and women share structural similarities, especially with respect to the lactiferous ducts and lymphatic drainage. In contrast, female rats have only one lactiferous duct per nipple. A comprehensive comparison between humans and dogs is given a special focus, as these species share several aspects in terms of breast/mammary cancer epidemiology, such as age of onset, hormonal etiology, risk factors, and the clinical course of the disease. Holistically, it is clear that each species has advantages and limitations that researchers must consider during the development of experimental designs and data analysis.

5.
Biomaterials ; 287: 121653, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803021

RESUMO

Pancreatic cancer exhibits a unique bioarchitecture and desmoplastic cancer-stoma interplay that governs disease progression, multi-resistance, and metastasis. Emulating the biological features and microenvironment heterogeneity of pancreatic cancer stroma in vitro is remarkably complex, yet highly desirable for advancing the discovery of innovative therapeutics. Diverse bioengineering approaches exploiting patient-derived organoids, cancer-on-a-chip platforms, and 3D bioprinted living constructs have been rapidly emerging in an endeavor to seamlessly recapitulate major tumor-stroma biodynamic interactions in a preclinical setting. Gathering on this, herein we showcase and discuss the most recent advances in bio-assembling pancreatic tumor-stroma models that mimic key disease hallmarks and its desmoplastic biosignature. A reverse engineering perspective of pancreatic tumor-stroma key elementary units is also provided and complemented by a detailed description of biodesign guidelines that are to be considered for improving 3D models physiomimetic features. This overview provides valuable examples and starting guidelines for researchers envisioning to engineer and characterize stroma-rich biomimetic tumor models. All in all, leveraging advanced bioengineering tools for capturing stromal heterogeneity and dynamics, opens new avenues toward generating more predictive and patient-personalized organotypic 3D in vitro platforms for screening transformative therapeutics targeting the tumor-stroma interplay.

6.
Adv Healthc Mater ; 11(13): e2102574, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35426253

RESUMO

Bioengineering close-to-native in vitro models that emulate tumors bioarchitecture and microenvironment is highly appreciable for improving disease modeling toolboxes. Herein, pancreatic cancer living units-so termed cancer-on-a-bead models-are generated. Such user-programmable in vitro platforms exhibit biomimetic multicompartmentalization and tunable integration of cancer associated stromal elements. These stratified units can be rapidly assembled in-air, exhibit reproducible morphological features, tunable size, and recapitulate spatially resolved tumor-stroma extracellular matrix (ECM) niches. Compartmentalization of pancreatic cancer and stromal cells in well-defined ECM microenvironments stimulates the secretion of key biomolecular effectors including transforming growth factor ß and Interleukin 1-ß, closely emulating the signatures of human pancreatic tumors. Cancer-on-a-bead models also display increased drug resistance to chemotherapeutics when compared to their reductionistic counterparts, reinforcing the importance to differentially model ECM components inclusion and their spatial stratification as observed in vivo. Beyond providing a universal technology that enables spatial modularity in tumor-stroma elements bioengineering, a scalable, in-air fabrication of ECM-tunable 3D platforms that can be leveraged for recapitulating differential matrix composition occurring in other human neoplasias is provided here.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Bioengenharia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
7.
Biomed Pharmacother ; 150: 113031, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35483199

RESUMO

Castration-resistant prostate cancer (CRPC) is an incurable form of prostate cancer (PCa), with DNMT1 and G9a being reported as overexpressed, rendering them highly attractive targets for precision medicine. CM-272 is a dual inhibitor of both methyltransferases' activity. Herein, we assessed the response of different PCa cell lines to CM-272, in both 2D and 3D models, and explored the molecular mechanisms underlying CM-272 inhibitory effects. CRPC tissues displayed significantly higher DNMT1, G9a and H3K9me2 expression than localized PCa. In vitro, CM-272 caused a significant decrease in PCa cell viability and proliferation alongside with increased apoptotic levels. We disclose that, under the evaluated dose, CM-272 led to G9a activity inhibition, while not significantly affecting DNMT1 activity. Upon G9a knockdown, DU145 and PC3 showed decreased cell viability. Remarkably, DU145 cells treated with CM-272 or with G9a knockdown displayed no differences in viability, suggesting a SET-dependent mechanism. Contrarily, PC3 cell viability impact was higher in G9a knockdown, compared with CM-272 treatment, suggesting an additional G9a function. Moreover, DU145 cells overexpressing catalytically functional G9a disclosed higher resistance to CM-272 treatment, reinforcing that the drug mechanism of action is dependent on G9a catalytic function. Importantly, we successfully assembled spheroids from several prostate cell lines. Our results showed that CM-272 retained its anti-tumoral effects in 3D PCa models, leading to a clear reduction in cancer cell survival. We concluded that inhibition of G9a methyltransferase activity by CM-272 has anti-tumor effect in PCa cells, holding therapeutic potential against CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
8.
Nanomedicine ; 42: 102548, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301158

RESUMO

This study reports the formulation and delivery of hyaluronic acid-Zein (HA-Zein) nanogels loaded with Shikonin (SK) to selectively attenuate macrophage inflammasome. The self-assembled nanogels, produced by nanoprecipitation, exhibited high encapsulation efficiency, and were selectively internalized by human THP-1-derived macrophages without eliciting cytotoxic responses. Cell treatment with HA-Zein-SK nanogels before stimulation with LPS and Nigericin significantly suppressed caspase-1 activation and IL-1ß production, indicating inflammasome inhibition. Importantly, HA-Zein-SK nanogels bioinstructed inflammasome activated macrophages towards an anti-inflammatory CD163highHLA-DRlow phenotype and led to a marked reduction in the release of pro-inflammatory mediators (TNF-α, IL-6 and IP-10). Extracellular metabolic profiling additionally revealed SK-mediated downregulation of cellular glycolytic activity, which was corroborated by a significant decrease of glycolytic genes transcription. All in all, our findings demonstrate the potential of bioactive SK-containing, self-assembled nanogels to modulate exacerbated responses in innate immune cells and, prospectively, in human tissues where NRLP3 inflammasome is abnormally activated upon injury or disease.


Assuntos
Inflamassomos , Zeína , Inflamassomos/metabolismo , Interleucina-1beta/genética , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanogéis , Naftoquinonas
9.
Trends Biotechnol ; 40(4): 432-447, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34556340

RESUMO

Combinatorial conjugation of organ-on-a-chip platforms with additive manufacturing technologies is rapidly emerging as a disruptive approach for upgrading cancer-on-a-chip systems towards anatomic-sized dynamic in vitro models. This valuable technological synergy has potential for giving rise to truly physiomimetic 3D models that better emulate tumor microenvironment elements, bioarchitecture, and response to multidimensional flow dynamics. Herein, we showcase the most recent advances in bioengineering 3D-bioprinted cancer-on-a-chip platforms and provide a comprehensive discussion on design guidelines and possibilities for high-throughput analysis. Such hybrid platforms represent a new generation of highly sophisticated 3D tumor models with improved biomimicry and predictability of therapeutics performance.


Assuntos
Bioimpressão , Neoplasias , Bioimpressão/métodos , Humanos , Dispositivos Lab-On-A-Chip , Neoplasias/patologia , Neoplasias/terapia , Impressão Tridimensional , Microambiente Tumoral
10.
Carbohydr Polym ; 277: 118826, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893243

RESUMO

Recent advances on brewer's yeast cell wall polysaccharides have unraveled exquisite structural features and diverse composition with (ß1→3), (ß1→6), (α1→4), (ß1→4)-mix-linked glucans that are recognized to interact with different cell receptors and trigger specific biological responses. Herein, a comprehensive showcase of structure-biofunctional relationships between yeast polysaccharides and their biological targets is highlighted, with a focus on polysaccharide features that govern the biomedical activity. The insolubility of ß-glucans is a crucial factor for binding and activation of Dectin-1 receptor, operating as adjuvants of immune responses. Contrarily, soluble low molecular weight ß-glucans have a strong inhibition of reactive oxygen species production, acting as antagonists of Dectin-1 mediated signaling. Soluble glucan-protein moieties can also act as antitumoral agents. The balance between mannoproteins-TLR2 and ß-glucans-Dectin-1 receptors-activation is crucial for osteogenesis. Biomedical applications value can also be obtained from yeast microcapsules as oral delivery systems, where highly branched (ß1→6)-glucans lead to higher receptor affinity.


Assuntos
Sistemas de Liberação de Medicamentos , Polissacarídeos/química , Saccharomyces cerevisiae/química , Administração Oral , Animais , Parede Celular/química , Humanos , Polissacarídeos/administração & dosagem
11.
Small Methods ; 5(5): e2001207, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928079

RESUMO

Cancer-associated pancreatic stellate cells installed in periacinar/periductal regions are master players in generating the characteristic biophysical shield found in pancreatic ductal adenocarcinoma (PDAC). Recreating this unique PDAC stromal architecture and its desmoplastic microenvironment in vitro is key to discover innovative treatments. However, this still remains highly challenging to realize. Herein, organotypic 3D microtumors that recapitulate PDAC-stroma spatial bioarchitecture, as well as its biomolecular, metabolic, and desmoplastic signatures, are bioengineered. Such newly engineered platforms, termed stratified microenvironment spheroid models - STAMS - mimic the spatial stratification of cancer-stromal cells, exhibit a reproducible morphology and sub-millimeter size. In culture, 3D STAMS secrete the key molecular biomarkers found in human pancreatic cancer, namely TGF-ß, FGF-2, IL-1ß, and MMP-9, among others. This is accompanied by an extensive desmoplastic reaction where collagen and glycosaminoglycans (GAGs) de novo deposition is observed. These stratified models also recapitulate the resistance to various chemotherapeutics when compared to standard cancer-stroma random 3D models. Therapeutics resistance is further evidenced upon STAMS inclusion in a tumor extracellular matrix (ECM)-mimetic hydrogel matrix, reinforcing the importance of mimicking PDAC-stroma bioarchitectural features in vitro. The 3D STAMS technology represents a next generation of biomimetic testing platforms with improved potential for advancing high-throughput screening and preclinical validation of innovative pancreatic cancer therapies.


Assuntos
Modelos Biológicos , Esferoides Celulares/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Hidrogéis/química , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Pancreáticas/patologia , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Microambiente Tumoral
12.
ACS Appl Mater Interfaces ; 13(30): 35469-35483, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34284573

RESUMO

Osteoporosis therapies leveraging bisphosphonates and mineral components (e.g., magnesium, calcium, and strontium) have been raising attention because of their potential for managing this ever-growing disease. The administration of multicomponent therapeutics (combined therapy) in elderly patients is complex and suffers from low patient adherence. Herein, we report an all-in-one combination of four antiosteoporotic components into a new family of coordination complexes: [M2(H4alen)4(H2O)2]·1.5H2O [where M2+ = Mg2+ (1), (Mg0.535Ca0.465)2+ (2) and (Mg0.505Ca0.450Sr0.045)2+ (3)]. These solid-state complexes were prepared, for the first time, through microwave-assisted synthesis. It is demonstrated that the compounds are capable of releasing their antiosteoporotic components, both in conditions that mimic the path along the gastrointestinal tract and in long periods under physiological conditions (pH ∼7.4). More importantly, when administered in low concentrations, the compounds did not elicit a cytotoxic effect toward liver, kidney, and osteoblast-like cell lines. Besides, it is important to highlight the unique coordination complex with four bone therapeutic components, [(Mg0.505Ca0.450Sr0.045)2(H4alen)4(H2O)2]·1.5H2O (3), which significantly promoted osteoblast metabolic activity up to ca. 1.4-fold versus the control group. These findings bring this type of compounds one-step closer to be considered as an all-in-one and more effective treatment for managing chronic bone diseases, prompting further research on their therapeutic properties.


Assuntos
Alendronato/análogos & derivados , Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Complexos de Coordenação/farmacologia , Conservadores da Densidade Óssea/síntese química , Complexos de Coordenação/síntese química , Liberação Controlada de Fármacos , Tratamento Farmacológico , Células Hep G2 , Humanos , Magnésio/química , Osteoblastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico
13.
Biomaterials ; 275: 120983, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34186236

RESUMO

Decellularized extracellular matrix (dECM) is emerging as a valuable tool for generating 3D in vitro tumor models that better recapitulate tumor-stroma interactions. However, the development of dECM-3D heterotypic microtumors exhibiting a controlled morphology is yet to be materialized. Precisely controlling microtumors morphologic features is key to avoid an inaccurate evaluation of therapeutics performance during preclinical screening. To address this, herein we employed ultra-low adhesion surfaces for bioengineering organotypic 3D metastatic breast cancer-fibroblast models enriched with dECM microfibrillar fragments, as a bottom-up strategy to include major matrix components and their associated biomolecular cues during the early stages of 3D microtissue spheroids assembly, simulating pre-existing ECM presence in the in vivo setting. This biomimetic approach enabled the self-assembly of dECM-3D tumor-stroma spheroids with tunable size and reproducible morphology. Along time, dECM enriched and stroma-rich microtumors exhibited necrotic core formation, secretion of key biomarkers and higher cancer-cell specific resistance to different chemotherapeutics in comparison to standard spheroids. Exometabolomics profiling of dECM-Spheroid in vitro models further identified important breast cancer metabolic features including glucose/pyruvate consumption and lactate excretion, which suggest an intense glycolytic activity, recapitulating major hallmarks of the native microenvironment. Such organotypic dECM-enriched microtumors overcome the morphologic variability generally associated with cell-laden dECM models, while providing a scalable testing platform that can be foreseeable leveraged for high-throughput screening of candidate therapeutics.


Assuntos
Neoplasias da Mama , Ensaios de Triagem em Larga Escala , Neoplasias da Mama/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular , Feminino , Fibroblastos , Humanos , Esferoides Celulares , Microambiente Tumoral
14.
Biofabrication ; 13(3)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34075894

RESUMO

The design of dynamically crosslinked hydrogel bioinks for three-dimensional (3D) bioprinting is emerging as a valuable strategy to advance the fabrication of mechanically tuneable cell-laden constructs for 3Din vitrodisease modelling and tissue engineering applications. Herein, a dynamic bioink comprising boronic acid-functionalised laminarin and alginate is explored for bioprinting 3D constructs under physiologically relevant conditions. The formulated bioink takes advantage of a double crosslinked network that combines covalent but reversible boronate ester bonds and ionic gelation via divalent cations. Moreover, it exhibits suitable rheological properties and improved mechanical features owing to its modular crosslinking chemistry, yielding stable constructs with user-programmable architecture. We explored such dynamic bioink as a supporting matrix for different cell classes, namely osteoblast precursors, fibroblasts and breast cancer cells. The resulting cell-laden bioprinted hydrogels display a homogeneous cell distribution post-printing and exceptional cell viability (>90%) that can be maintained for prolonged time periods in culture (14 days) for all cell lines. This simple and chemically versatile approach is envisaged to accelerate the development of multifunctional bioinks and contribute towards the fabrication of biomimetic 3D scaffolds with applicability in a wide range of predictive or exploratory biomedical platforms.


Assuntos
Bioimpressão , Engenharia Tecidual , Alicerces Teciduais , Alginatos , Boro , Glucanos , Hidrogéis , Impressão Tridimensional
15.
Adv Sci (Weinh) ; 8(4): 2003129, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643799

RESUMO

The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.

16.
Methods Mol Biol ; 2269: 3-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687668

RESUMO

Over recent years, the role of distinct mesenchymal stem cell populations in cancer progression has become increasingly evident. In this regard, developing in vitro preclinical tumor models capable of portraying tumor-associated mesenchymal stem cells (TA-MSCs) interactions with the tumor microenvironment (TME), cellular and extracellular components, would allow to improve the predictive potential of these platforms and expedite preclinical drug screening. Although recent studies successfully developed in vitro tumor models in which the biomolecular and cellular behaviors of TA-MSCs were recapitulated in the context of their interactions with specific TME components, no consensus has yet been reached regarding distinct TA-MSCs influence in the evolution of solid tumors. The paradoxical observations regarding the roles of MSCs on in vitro tumor models can in part be associated to a lack of standardization in how MSCs integration is performed. Herein, we summarize some of the main parameters linked to phenotypic variations established upon MSCs inclusion and interaction within in vitro tumor models. A critical overview of recent studies and how standardization of key parameters could improve the reproducibility and predictability of current preclinical validation models containing MSCs is also provided.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Microambiente Tumoral , Animais , Técnicas de Cocultura , Humanos , Células-Tronco Mesenquimais/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia
17.
Methods Mol Biol ; 2269: 49-61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687671

RESUMO

In solid tumors, mesenchymal stem cells (MSCs) are recognized to establish complex intercommunication networks with cancer cells and to significantly influence their invasion and metastasis potential. Such bidirectional interplay occurs between both tissue resident/tumor-associated MSCs (TA-MSCs) and also tumor infiltrating MSCs (TM-MSCs) that migrate from distant sites such as the bone marrow. Interestingly, malignant cells interactions with MSCs in the tumor microenvironment extends beyond conventional exchanges of signaling factors and extracellular vesicles, including unconventional direct exchanges of intracellular components, or cancer cells cannibalism of MSCs. In the context of 3D in vitro tumor models, cell tracking assays making use of cell-labeling probes such as membrane penetrating dyes, can be leveraged to shed light on these events, and allow researchers to analyze overtime cell-to-cell spatial distribution, fusion, internal organization, and changes in co-cultured populations ratios. Herein, we describe a high-throughput compatible method through which MSCs positioning and permanence within in vitro 3D multicellular tumor spheroid models (3D-MCTS) can be tracked overtime. Although we have focused on the interactions of human bone marrow-derived MSCs (hBM-MSCs) within heterotypic lung cancer A549 3D-MCTS, these procedures can be implemented for other 3D tumor spheroid models and types of cells, taking into consideration that optimization steps are undertaken.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Microambiente Tumoral , Humanos , Células-Tronco Mesenquimais/patologia , Neoplasias/patologia , Esferoides Celulares/patologia
18.
J Control Release ; 331: 85-102, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33388341

RESUMO

Living therapeutics approaches that exploit mesenchymal stem cells (MSCs) as nanomedicine carriers are highly attractive due to MSCs native tropism toward the 3D tumor microenvironment. However, a streamlined pre-clinical evaluation of nano-in-cell anti-cancer therapies remains limited by the lack of in vitro testing platforms for screening MSCs-3D microtumor interactions. Herein we generated dense breast cancer mono and heterotypic 3D micro-spheroids for evaluating MSCs-solid tumors interactions and screen advanced nano-in-MSCs therapies. Breast cancer monotypic and heterotypic models comprising cancer cells and cancer associated fibroblasts (CAFs) were self-assembled under controlled conditions using the liquid overlay technique. The resulting microtumors exhibited high compactness, reproducible morphology and necrotic regions, similarly to native solid tumors. For evaluating tumoritropic therapies in organotypic tumor-stroma 3D models, theranostic polydopamine nanoparticles loaded with indocyanine green-doxorubicin combinations (PDA-ICG-DOX) were synthesized and administered to human bone-marrow derived MSCs (hBM-MSCs). The dual-loaded PDA nano-platforms were efficiently internalized, exhibited highly efficient NIR-light responsivity and assured MSCs viability up to 3 days. The administration of PDA-ICG-DOX nano-in-MSC tumoritropic units to microtumor models was performed in ultra-low adhesion surfaces for simulating in vitro the stem cell-tumor interactions observed in the in vivo scenario. Bioimaging analysis revealed hBM-MSCs adhesion to 3D cancer cells mass and MSCs-chemo-photothermal nanotherapeutics exhibited higher anti-tumor potential when compared to their standalone chemotherapy treated 3D tumor counterparts. Overall, the proposed methodology is suitable for evaluating MSCs-microtumors individualized interactions and enables a rapid high-throughput screening of tumoritropic therapies bioperformance.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Doxorrubicina , Detecção Precoce de Câncer , Feminino , Humanos , Verde de Indocianina , Fototerapia , Microambiente Tumoral
19.
Chemistry ; 26(67): 15416-15437, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151591

RESUMO

Osteoporosis, Paget's disease and osteosarcoma are a few examples of bone tissue disorders that affect millions of people worldwide. These conditions can strictly limit the lifestyle of patients and may even lead to their demise. To prevent this or, at least, try to manage the situation, there are several treatments available on the market. Notwithstanding, research has been driven by the possibility to improve the existing therapies, as well as to find new approaches that could better respond to these diseases. In this Review the path is shown through which, in recent years, coordination compounds have been prepared and manufactured to be applied in the management of bone tissue disorders. Starting with the design and preparation of the coordination compounds with various dimensionalities, two approaches have been used: (1) they are prepared as three-dimensional cages that can act as delivery systems for therapeutic substances, or (2) they are constructed/prepared from compounds with intrinsic therapeutic properties. Following this, several strategies have been explored to manufacture the effective delivery to the patients. The versatility of coordination compounds has allowed their use in the preparation of drug tablets, coatings for titanium implants, or even scaffolds for bone tissue engineering. In the end, it becomes clear that these compounds can be a valuable approach to reach a better treatment for bone tissue disorders. Nonetheless, along the road, a few bumps have appeared concerning the therapeutic profile, such as the effect of the structural arrangement or particle size.


Assuntos
Doenças Ósseas , Complexos de Coordenação , Titânio , Doenças Ósseas/terapia , Complexos de Coordenação/uso terapêutico , Humanos , Próteses e Implantes , Engenharia Tecidual , Cicatrização
20.
Adv Biosyst ; 4(11): e2000123, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32954683

RESUMO

Bone regeneration requires the presence of specific factors to induce the differentiation of stem cells into osteoblasts. These factors induce osteogenesis by stimulating the expression of bone-related proteins, bone cell proliferation and differentiation. Herein, bioactive mesoporous silica nanoparticles are doped with calcium and phosphate ions while the porous network is loaded with dexamethasone (MSN-CaPDex). The bioactive MSN-CaPDex nanocarriers are prepared without affecting the narrow size distribution, pore structure, and morphology of the MSNs, while incorporating multi-stimuli, complementary ionic/biochemical bioactive mediators. The bioactive nanocarriers induce osteogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) after a single-dose administration, and without the need for further soluble osteogenic factors, in contrast to the standard continuous stimulation provided by osteogenic medium. The hBM-MSCs exhibit several biomarkers of osteogenic differentiation, including alkaline phosphatase peaking at early time points, secretion of osteopontin and osteocalcin, and deposition of a calcium-rich matrix. Overall, by inducing the osteogenic differentiation of stem cells with a single-dose administration and without requiring repeated osteogenic supplementation, the newly synthesized multi-bioactive hybrid nanocarrier shows great potential for bone tissue engineering applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais , Nanopartículas , Osteogênese/efeitos dos fármacos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Células Cultivadas , Dexametasona/química , Dexametasona/farmacologia , Portadores de Fármacos/química , Humanos , Células-Tronco Mesenquimais/classificação , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício/química , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA