Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Clin Endocrinol Metab ; 98(12): E1988-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24057292

RESUMO

BACKGROUND: C-type natriuretic peptide (CNP)/natriuretic peptide receptor 2 (NPR2) signaling is essential for long bone growth. Enhanced CNP production caused by chromosomal translocations results in tall stature, a Marfanoid phenotype, and skeletal abnormalities. A similar phenotype was described in a family with an activating NPR2 mutation within the guanylyl cyclase domain. CASE: Here we describe an extremely tall male without skeletal deformities, with a novel NPR2 mutation (p.Arg655Cys) located in the kinase homology domain. OBJECTIVES: The objective of the study was to investigate the functional and structural effects of the NPR2 mutation. METHODS: Guanylyl cyclase activities of wild-type vs mutant NPR2 were analyzed in transfected human embryonic kidney 293 cells and in skin fibroblasts. The former were also used to study possible interactions between both isoforms. Homology modeling was performed to understand the molecular impact of the mutation. RESULTS: CNP-stimulated cGMP production by the mutant NPR2 was markedly increased in patient skin fibroblasts and transfected human embryonic kidney 293 cells. The stimulatory effects of ATP on CNP-dependent guanylyl cyclase activity were augmented, suggesting that this novel mutation enhances both the responsiveness of NPR2 to CNP and its allosteric modulation/stabilization by ATP. Coimmunoprecipitation showed that wild-type and mutant NPR2 can form stable heterodimers, suggesting a dominant-positive effect. In accordance with augmented endogenous receptor activity, plasma N-terminal pro-CNP (a marker of CNP production in tissues) was reduced in the proband. CONCLUSIONS: We report the first activating mutation within the kinase homology domain of NPR2, resulting in extremely tall stature. Our observations emphasize the important role of this domain in the regulation of guanylyl cyclase activity and bone growth in response to CNP.


Assuntos
Desenvolvimento Ósseo , Doenças do Desenvolvimento Ósseo/genética , Mutação , Receptores do Fator Natriurético Atrial/genética , Substituição de Aminoácidos , Estatura , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Domínio Catalítico , Ativação Enzimática , Humanos , Masculino , Pessoa de Meia-Idade , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(45): 18500-5, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22027011

RESUMO

Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca(2+)](i) increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca(2+) levels. This pathway involves the activation of Ca(2+)-permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca(2+) channels and ultimately increases myocyte Ca(2)(+)(i) levels. These observations reveal a dual role of the ANP/GC-A-signaling pathway in the regulation of cardiac myocyte Ca(2+)(i) homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca(2+)(i)-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca(2+)](i) might increase the propensity to cardiac hypertrophy and arrhythmias.


Assuntos
Fator Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Miocárdio/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos
3.
FEBS J ; 277(11): 2440-53, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20456499

RESUMO

Atrial natriuretic peptide (ANP), via its guanylyl cyclase A (GC-A) receptor and intracellular guanosine 3',5'-cyclic monophosphate production, is critically involved in the regulation of blood pressure. In patients with chronic heart failure, the plasma levels of ANP are increased, but the cardiovascular actions are severely blunted, indicating a receptor or postreceptor defect. Studies on metabolically labelled GC-A-overexpressing cells have indicated that GC-A is extensively phosphorylated, and that ANP-induced homologous desensitization of GC-A correlates with receptor dephosphorylation, a mechanism which might contribute to a loss of function in vivo. In this study, tandem MS analysis of the GC-A receptor, expressed in the human embryonic kidney cell line HEK293, revealed unambiguously that the intracellular domain of the receptor is phosphorylated at multiple residues: Ser487, Ser497, Thr500, Ser502, Ser506, Ser510 and Thr513. MS quantification based on multiple reaction monitoring demonstrated that ANP-provoked desensitization was accompanied by a complex pattern of receptor phosphorylation and dephosphorylation. The population of completely phosphorylated GC-A was diminished. However, intriguingly, the phosphorylation of GC-A at Ser487 was selectively enhanced after exposure to ANP. The functional relevance of this observation was analysed by site-directed mutagenesis. The substitution of Ser487 by glutamate (which mimics phosphorylation) blunted the activation of the GC-A receptor by ANP, but prevented further desensitization. Our data corroborate previous studies suggesting that the responsiveness of GC-A to ANP is regulated by phosphorylation. However, in addition to the dephosphorylation of the previously postulated sites (Ser497, Thr500, Ser502, Ser506, Ser510), homologous desensitization seems to involve the phosphorylation of GC-A at Ser487, a newly identified site of phosphorylation. The identification and further characterization of the specific mechanisms involved in the downregulation of GC-A responsiveness to ANP may have important pathophysiological implications.


Assuntos
GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Sequência de Aminoácidos , Animais , Fator Natriurético Atrial/sangue , Cardiomegalia/sangue , Domínio Catalítico , Linhagem Celular , Insuficiência Cardíaca/sangue , Humanos , Rim/embriologia , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/farmacologia , Oligopeptídeos , Peptídeos/fisiologia , Fosfopeptídeos/análise , Fosforilação , Ratos , Sistemas do Segundo Mensageiro/fisiologia
4.
Mol Endocrinol ; 23(12): 1973-82, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19855088

RESUMO

The ATP-sensitive potassium (K(ATP)) channel is a key molecule involved in glucose-stimulated insulin secretion. The activity of this channel regulates beta-cell membrane potential, glucose- induced [Ca(2+)](i) signals, and insulin release. In this study, the rapid effect of physiological concentrations of 17beta-estradiol (E2) on K(ATP) channel activity was studied in intact beta-cells by use of the patch-clamp technique. When cells from wild-type (WT) mice were used, 1 nm E2 rapidly reduced K(ATP) channel activity by 60%. The action of E2 on K(ATP) channel was not modified in beta-cells from ERalpha-/- mice, yet it was significantly reduced in cells from ERbeta-/- mice. The effect of E2 was mimicked by the ERbeta agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). Activation of ERbeta by DPN enhanced glucose-induced Ca(2+) signals and insulin release. Previous evidence indicated that the acute inhibitory effects of E2 on K(ATP) channel activity involve cyclic GMP and cyclic GMP-dependent protein kinase. In this study, we used beta-cells from mice with genetic ablation of the membrane guanylate cyclase A receptor for atrial natriuretic peptide (also called the atrial natriuretic peptide receptor) (GC-A KO mice) to demonstrate the involvement of this membrane receptor in the rapid E2 actions triggered in beta-cells. E2 rapidly inhibited K(ATP) channel activity and enhanced insulin release in islets from WT mice but not in islets from GC-A KO mice. In addition, DPN reduced K(ATP) channel activity in beta-cells from WT mice, but not in beta-cells from GC-A KO mice. This work unveils a new role for ERbeta as an insulinotropic molecule that may have important physiological and pharmacological implications.


Assuntos
Estradiol/farmacologia , Receptor beta de Estrogênio/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Canais KATP/efeitos dos fármacos , Canais KATP/metabolismo , Receptores do Fator Natriurético Atrial/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Nitrilas/farmacologia , Técnicas de Patch-Clamp , Fenóis , Pirazóis/farmacologia , Receptores do Fator Natriurético Atrial/genética
5.
J Biol Chem ; 283(42): 28313-20, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18713751

RESUMO

Atrial (ANP) and B-type natriuretic peptides (BNP) modulate blood pressure and volume through the stimulation of cyclic GMP production by their guanylyl cyclase-A (GC-A) receptor. A novel isoform of GC-A has been identified that is the result of differential splicing of exon 4. The deletion of a 51-bp sequence is predicted to delete 17 amino acids (Lys314-Gln330) in the membrane-distal part of the extracellular domain. Reverse transcription-PCR analyses demonstrated low messenger RNA expression levels of spliced GC-A in all tissues. Homology modeling suggested that the alterations in the protein structure could interfere with ANP binding or signaling. Indeed, functional studies in transfected HEK 293 cells demonstrated that binding of ANP and ANP-induced cyclic GMP formation by GC-ADelta(Lys314-Gln330) were totally abolished. Furthermore, cotransfection studies showed that this GC-A variant forms heterodimers with the wild type receptor and inhibits ligand-inducible cGMP generation. Finally, treatment of mice with angiotensin II (300 ng/kg/min during 7 days) resulted in enhanced pulmonary mRNA expression of spliced GC-A, which was concomitant to diminished GC-A/cGMP responses to ANP. We conclude that alternative splicing can regulate endogenous ANP/GC-A signaling. Angiotensin II-induced alternative splicing of GC-A may represent a novel mechanism for reducing the sensitivity to ANP.


Assuntos
Processamento Alternativo , Fator Natriurético Atrial/química , Fator Natriurético Atrial/fisiologia , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/fisiologia , Angiotensina II/metabolismo , Animais , Fator Natriurético Atrial/genética , Linhagem Celular , GMP Cíclico/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Peptídeos/química , Ratos , Receptores do Fator Natriurético Atrial/genética , Transdução de Sinais
6.
Adv Exp Med Biol ; 614: 157-64, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18290326

RESUMO

Tumor cells exhibit mechanisms by which chemotherapeutic drugs can be actively pumped out of the cell (e.g., p-glycoprotein pGP, MRP1), resulting in a multidrug resistant phenotype. Many human tumors show pronounced hypoxia which can result in a local ATP depletion which in turn may compromise the efficacy of these transporters. The aim of this study was therefore to assess the transport activity and expression of drug transporters under hypoxic conditions. Prostate carcinoma cells (R3327-AT1) were exposed to hypoxia (pO2 < 0.5 mmHg) for up to 24h and pump activity was determined by an efflux assay. The results showed that exposing cells to hypoxia for 3-6 h led to a moderate increase in pGP activity. After 24 h pGP activity was reduced by 44% compared to control levels. Hypoxia reduced the MRPI activity to a lesser extent (by 25%). However, the expression of pGP and MRP1 was almost independent of the medium pO2. In conclusion, pronounced hypoxia had only minor effects on the activity of drug transporters with the activity decreasing only after 12-24 h under hypoxia, possibly as a result of ATP depletion. Instead, indirect effects of hypoxia leading to extracellular acidosis seem to have a much more pronounced effect on pGP activity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Carcinoma/metabolismo , Hipóxia Celular/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias da Próstata/metabolismo , Acidose/metabolismo , Animais , Transporte Biológico , Carcinoma/patologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Soluções Isotônicas , Masculino , Neoplasias da Próstata/patologia , Ratos , Rodamina 123/metabolismo , Solução de Ringer , Fatores de Tempo , Verapamil/farmacocinética
7.
Adv Exp Med Biol ; 599: 155-61, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17727260

RESUMO

In the microenvironment of solid growing tumors, pronounced hypoxia or extracellular acidosis is commonly found. The aim of this study was the analysis of the cytotoxic effect of different chemotherapeutic agents (cisplatin, daunorubicin, docetaxel) under these conditions in vitro. Prostate carcinoma cells (R3327-AT1) were exposed to hypoxia (pO2 < 0.5 mmHg) or extracellular acidosis (pH = 6.6) for 6h. After 3h, cytotoxic drugs were added. The cytotoxic effect was assessed by measuring caspase 3-activity (apoptosis), LDH release (necrosis) and repopulation of the cells after chemotherapy (cell death). Compared to aerobic control conditions, severe hypoxia over 6 h per se led to a slight increase in apoptosis, necrosis and cell death. With all three chemotherapeutic agents, hypoxia led to a reduced (by approx. 25%) caspase 3-activity and a marked increase in necrosis. However, the overall cytotoxicity of the drug was not affected by O2-deficiency. By contrast, during extracellular acidosis, the cytotoxic effect of daunorubicin was reduced by 40%, preferentially due to a marked reduction in apoptosis. With cisplatin and docetaxel no change in overall cell death was detected. However, for daunorubicin the tumor-pH seems to have a strong impact on cytotoxicity. With this chemotherapeutic drug the therapeutic efficacy is markedly reduced in an acidotic environment.


Assuntos
Acidose , Antineoplásicos/uso terapêutico , Espaço Extracelular/química , Hipóxia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cisplatino/metabolismo , Cisplatino/uso terapêutico , Daunorrubicina/metabolismo , Daunorrubicina/uso terapêutico , Docetaxel , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/patologia , Ratos , Taxoides/metabolismo , Taxoides/uso terapêutico
8.
Oncol Rep ; 17(1): 239-44, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17143504

RESUMO

The metabolic microenvironment of solid tumors is characterized by an oxygen deficiency and increased anaerobic glycolysis leading to extracellular acidosis and ATP depletion, which in turn may affect other energy-dependent cellular pathways. Since many tumors overexpress active drug transporters (e.g. the p-glycoprotein) leading to a multidrug-resistant phenotype, this study analyzes the impact of the different aspects of the extracellular microenvironment (hypoxia and acidosis) on the activity and expression of the p-glycoprotein (pGP) in the human colon carcinoma cell line LS513. For up to 24 h cells were exposed to hypoxia (pO2<0.5 mmHg), an acidic extracellular environment (pH 6.6), or the combination of hypoxia and acidosis. Under hypoxic conditions (at a normal pH), the pGP activity (measured by the daunorubicin efflux) and the pGP expression were not markedly altered. Under acidic conditions, however, the pGP-mediated drug efflux was increased, an effect which was even more pronounced when the cells were exposed to hypoxia and acidosis simultaneously (increasing the pGP-activity by 70%). The cellular pGP expression remained almost constant under these conditions, indicating that the increased transport rate results from a functional modulation. The findings of the present study indicate that the parameters of the tumor microenviroment (especially extracellular acidosis) can increase the pGP-mediated drug efflux, an effect which may explain the reduced cytotoxicity of chemotherapeutic agents in hypoxic/acidic tumors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias Colorretais/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Acidose/metabolismo , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Daunorrubicina/farmacocinética , Humanos , Concentração de Íons de Hidrogênio
9.
Neoplasia ; 8(2): 143-52, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16611407

RESUMO

The expression and activity of P-glycoprotein (pGP) play a role in the multidrug resistance of tumors. Because solid-growing tumors often show pronounced hypoxia or extracellular acidosis, this study attempted to analyze the impact of an acidic environment on the expression and activity of pGP and on the cytotoxicity of chemotherapeutic agents. For this, prostate carcinoma cells were exposed to an acidic extracellular environment (pH 6.6) for up to 24 hours. pGP activity was more than doubled after 3 to 6 hours of incubation in acidic medium, whereas cellular pGP expression remained constant, indicating that increased transport rate is the result of functional modulation. In parallel, the cytotoxic efficacy of daunorubicin showed pronounced reduction at low pH, an effect that was reversible on coincubation with a pGP inhibitor. A reduction of intracellular Ca2+ concentration by 35% under acidic conditions induced a higher transport rate of pGP, an effect comparable to that found on inhibition of protein kinase C (PKC). These data indicate that pGP activity is increased by low extracellular pH presumably as a result of lowered intracellular calcium levels and inhibition of PKC. These findings may explain the reduced cytotoxicity of chemotherapeutic agents in hypoxic/acidic tumors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Espaço Extracelular/fisiologia , Concentração de Íons de Hidrogênio , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata
10.
Cell Physiol Biochem ; 17(1-2): 21-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16543718

RESUMO

The steroid hormone aldosterone is a major regulator of extracellular volume and blood pressure. Aldosterone effectors are for example the epithelial Na(+) channel (ENaC), the Na(+)-K(+)-ATPase and the proximal tubule Na(+)/H(+) exchanger isoform 3 (NHE3). The aim of this study was to investigate whether aldosterone acts directly on proximal tubule cells to stimulate NHE3 and if so whether the EGF-receptor (EGFR) is involved. For this purpose, primary human renal proximal tubule cells were exposed to aldosterone. NHE3 activity was determined from Na(+)- dependent pH-recovery, NHE3 surface expression was determined by biotinylation and immunoblotting. EGFR-expression was assessed by ELISA. pH(i)- measurements revealed an aldosterone-induced increase in NHE3 activity, which was inhibited by the mineralocorticoid receptor blocker spironolactone and by the EGFR-kinase inhibitor AG1478. Immunoprecipitation and immunoblot analysis showed an aldosterone-induced increase in NHE3 surface expression, which was also inhibited by spironolactone and AG1478. Furthermore, aldosterone enhanced EGFR-expression. In conclusion, aldosterone stimulates NHE3 in human proximal tubule cells. The underlying mechanisms include AG1478 inhibitable kinase and are paralleled by enhanced EGFR expression, which could be compatible with EGF-receptor-pathway-dependent surface expression and activity of NHE3 in human primary renal proximal tubule epithelial cells.


Assuntos
Aldosterona/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , Túbulos Renais Proximais/citologia , Quinazolinas , Trocador 3 de Sódio-Hidrogênio , Tirfostinas/farmacologia
11.
J Physiol ; 567(Pt 1): 225-38, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15946960

RESUMO

Their glycolytic metabolism imposes an increased acid load upon tumour cells. The surplus protons are extruded by the Na+/H+ exchanger (NHE) which causes an extracellular acidification. It is not yet known by what mechanism extracellular pH (pHe) and NHE activity affect tumour cell migration and thus metastasis. We studied the impact of pHe and NHE activity on the motility of human melanoma (MV3) cells. Cells were seeded on/in collagen I matrices. Migration was monitored employing time lapse video microscopy and then quantified as the movement of the cell centre. Intracellular pH (pHi) was measured fluorometrically. Cell-matrix interactions were tested in cell adhesion assays and by the displacement of microbeads inside a collagen matrix. Migration depended on the integrin alpha2beta1. Cells reached their maximum motility at pHe approximately 7.0. They hardly migrated at pHe 6.6 or 7.5, when NHE was inhibited, or when NHE activity was stimulated by loading cells with propionic acid. These procedures also caused characteristic changes in cell morphology and pHi. The changes in pHi, however, did not account for the changes in morphology and migratory behaviour. Migration and morphology more likely correlate with the strength of cell-matrix interactions. Adhesion was the strongest at pHe 6.6. It weakened at basic pHe, upon NHE inhibition, or upon blockage of the integrin alpha2beta1. We propose that pHe and NHE activity affect migration of human melanoma cells by modulating cell-matrix interactions. Migration is hindered when the interaction is too strong (acidic pHe) or too weak (alkaline pHe or NHE inhibition).


Assuntos
Movimento Celular/fisiologia , Concentração de Íons de Hidrogênio , Melanoma , Neoplasias Cutâneas , Trocadores de Sódio-Hidrogênio/fisiologia , Adesão Celular/fisiologia , Linhagem Celular Tumoral/citologia , Linhagem Celular Tumoral/fisiologia , Forma Celular , Colágeno , Matriz Extracelular/metabolismo , Adesões Focais/fisiologia , Humanos , Integrina beta1/metabolismo , Microscopia de Vídeo
12.
J Biol Chem ; 277(48): 45892-7, 2002 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-12244120

RESUMO

The epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport using ERK1/2 as a downstream effector. Furthermore, the EGF receptor (EGFR) is involved in signaling by G-protein-coupled receptors, growth hormone, and cytokines via transactivation. It has been suggested that steroids interact with peptide hormones. Previously, we have shown that aldosterone modulates EGF responses in Madin-Darby canine kidney cells (Gekle, M., Freudinger, R., Mildenberger, S., and Silbernagl, S. (2002) Am. J. Physiol. 282, F669-F679). Here, we tested the hypothesis that human EGFR-1 can confer alternative aldosterone responsiveness with respect to ERK1/2 phosphorylation to Chinese hamster ovary cells, which do not express EGFR. Wild-type Chinese hamster ovary cells did not respond to EGF or aldosterone. After transfection of human EGFR-1, the cells responded to EGF, but not to aldosterone. However, when submaximal concentrations of EGF were used, nanomolar concentrations of aldosterone potentiated the action of EGF within minutes, resulting in a leftward shift of the EGF dose-response curve. This was not the case in mock-transfected cells. The EGFR kinase inhibitor tyrphostin AG1478 or the MEK1/2 inhibitor U0126 completely prevented the effect. Furthermore, aldosterone enhanced Tyr phosphorylation of c-Src and EGFR, and an inhibitor of cytosolic tyrosine kinases (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriociaine) prevented the action of aldosterone. Our data show that aldosterone uses the EGF-EGFR-MEK1/2-ERK1/2 signaling cascade to elicit its alternative effects. In the presence of EGF, aldosterone leads to EGFR transactivation via cytosolic tyrosine kinases of the Src family.


Assuntos
Aldosterona/metabolismo , Receptores ErbB/fisiologia , Transdução de Sinais/fisiologia , Animais , Células CHO , Cricetinae , Cães , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/genética , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo
13.
Am J Physiol Renal Physiol ; 283(3): F549-58, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12167607

RESUMO

Receptor-mediated, clathrin-dependent endocytosis (RME) is important for macromolecular transport and regulation of cell-surface protein expression. Pharmacological studies have shown that the plasma membrane transport protein Na(+)/H(+) exchanger 3 (NHE3), which shuttles between the plasma membrane and the early endosomal compartment by means of clathrin-mediated endocytosis, contributes to endosomal pH homeostasis and endocytic fusion events. Furthermore, it is known that NHE3 is phosphorylated and inhibited by cAMP-dependent kinase (protein kinase A). Here, we show, in a cellular knockout/retransfection approach, that NHE3 supports RME and confers cAMP sensitivity to RME, using megalin/cubilin-mediated albumin uptake in opossum kidney cells. RME, but not fluid-phase endocytosis, was dependent on NHE3 activity and expression. Furthermore, NHE3 deficiency or inhibition reduced the relative surface expression of megalin without altering total expression. In wild-type cells, cAMP inhibits NHE3 activity, leads to endosomal alkalinization, and reduces RME. In NHE3-deficient cells, endosomal pH is not sensitive to NHE3 inhibition, and cAMP does not affect endosomal pH or RME. NHE3 transfection into deficient cells restores RME and the effects of cAMP. Thus our data show that NHE3 is important for cAMP sensitivity of clathrin-dependent RME.


Assuntos
Clatrina/fisiologia , AMP Cíclico/fisiologia , Endocitose/fisiologia , Rim/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/fisiologia , Albuminas/metabolismo , Cloreto de Amônio/farmacologia , Animais , Western Blotting , Bucladesina/farmacologia , Linhagem Celular , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/análise , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Mutagênese , Gambás , Trocador 3 de Sódio-Hidrogênio , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA