Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498492

RESUMO

Evolutionary radiations are one of the most striking processes biologists have studied in islands. A radiation is often sparked by the appearance of ecological opportunity, which can originate in processes like trophic niche segregation or the evolution of key innovations. Another recently proposed mechanism is facilitation mediated by the bacterial communities associated with the radiating species. Here we explore the role of the bacterial communities in a radiation of lichen-forming fungi endemic to Macaronesia. Bacterial diversity was quantified by high throughput sequencing of the V1-V2 hyper-variable region of 172 specimens. We characterized the taxonomic and phylogenetic diversity of the bacterial communities associated with the different species, tested for compositional differences between these communities, carried out a functional prediction, explored the relative importance of different factors in bacterial community structure, searched for phylosymbiosis and tried to identify the origin of this pattern. The species of the radiation differed in the composition of their bacterial communities, which were mostly comprised of Alphaproteobacteria and Acidobacteriia, but not in the functionality of those communities. A phylosimbiotic pattern was detected, but it was probably caused by environmental filtering. These findings are congruent with the combined effect of secondary chemistry and mycobiont identity being the main driver of bacterial community structure. Altogether, our results suggest that the associated bacterial communities are not the radiation's main driver. There is one possible exception, however, a species that has an abnormally diverse core microbiome and whose bacterial communities could be subject to a specific environmental filter at the functional level.


Assuntos
Líquens , Microbiota , Filogenia , Bactérias/genética , Fungos/genética , Microbiota/genética
2.
Microb Ecol ; 82(2): 334-343, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33452613

RESUMO

Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus Trebouxia (T. TR1 and T. TR9) and Coccomyxa (C. subellipsoidea and C. simplex) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure, Coccomyxa algae showed higher capacity of Cd intake than Trebouxia species, with C. subellipsoidea being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both Coccomyxa algae. Trebouxia TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them. Coccomyxa subellipsoidea and Trebouxia TR9 appear as the most interesting candidates for further applications.


Assuntos
Clorófitas , Líquens , Microalgas , Cádmio/toxicidade , Clorófitas/genética , Microalgas/genética , Estresse Oxidativo
3.
Front Microbiol ; 12: 784182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046912

RESUMO

Speciation in oceanic islands has attracted the interest of scientists since the 19th century. One of the most striking evolutionary phenomena that can be studied in islands is adaptive radiation, that is, when a lineage gives rise to different species by means of ecological speciation. Some of the best-known examples of adaptive radiation are charismatic organisms like the Darwin finches of the Galapagos and the cichlid fishes of the great African lakes. In these and many other examples, a segregation of the trophic niche has been shown to be an important diversification driver. Radiations are known in other groups of organisms, such as lichen-forming fungi. However, very few studies have investigated their adaptive nature, and none have focused on the trophic niche. In this study, we explore the role of the trophic niche in a putative radiation of endemic species from the Macaronesian Region, the Ramalina decipiens group. The photobiont diversity was studied by Illumina MiSeq sequencing of the ITS2 region of 197 specimens spanning the phylogenetic breadth and geographic range of the group. A total of 66 amplicon sequence variants belonging to the four main clades of the algal genus Trebouxia were found. Approximately half of the examined thalli showed algal coexistence, but in most of them, a single main photobiont amounted to more than 90% of the reads. However, there were no significant differences in photobiont identity and in the abundance of ITS2 reads across the species of the group. We conclude that a segregation of the trophic niche has not occurred in the R. decipiens radiation.

4.
New Phytol ; 174(2): 357-366, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17388898

RESUMO

Chloroplasts contain a plastoquinone-NADH-oxidoreductase (Ndh) complex involved in protection against stress and the maintenance of cyclic electron flow. Inactivation of the Ndh complex delays the development of leaf senescence symptoms. Chlorophyll a fluorescence measurements, blue native gel electrophoresis, immunodetection and other techniques were employed to study tobacco (Nicotiana tabacum) Ndh-defective mutants (DeltandhF). The DeltandhF mutants compared with wild-type plants presented: (i) higher photosystem II : photosystem I (PSII : PSI) ratios; (ii) similar or higher levels of ascorbate, carotenoids, thylakoid peroxidase and superoxide dismutase, yield (Phi(PSII)) and maximal photochemical efficiency of PSII levels (F(v)/F(m)) than wild-type plant leaves of the same age; (iii) lower values of nonphotochemical quenching yield (Phi(NPQ)), but not at very high light intensities or during induced leaf senescence; (iv) a similar decrease of antioxidants during senescence; (v) no significant differences in the total foliar area and apical growth rate; and (vi) a production of viable seeds significantly higher than wild-type plants. These results suggest that the Ndh complex is involved in one of the redundant mechanisms that play a safety role in photosynthesis under stress, which has been conserved during evolution, but that its deletion increases fitness when plants are grown under favourable controlled conditions.


Assuntos
Antioxidantes/metabolismo , Cloroplastos/metabolismo , NADH Desidrogenase/fisiologia , Nicotiana/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Proteínas de Plantas/fisiologia , Clorofila/fisiologia , Clorofila A , Transporte de Elétrons/fisiologia , Fluorescência , Inativação Gênica , Luz , NADH Desidrogenase/genética , Fenótipo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Reprodução/fisiologia , Fatores de Tempo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA