Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Cell Biol ; 34(9): 698-699, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089957

RESUMO

The accumulation of translocation intermediates in the mitochondrial import machinery threatens cellular fitness and is associated with cancer and neurodegeneration. A recent study by Weidberg and colleagues identifies ATAD1 as an ATP-driven extraction machine on the mitochondrial surface that pulls precursors into the cytosol to prevent clogging of mitochondrial import pores.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Proteínas Mitocondriais , Transporte Proteico , Trifosfato de Adenosina/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nat Commun ; 14(1): 5942, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741838

RESUMO

The double-ring AAA+ ATPase Pex1/Pex6 is required for peroxisomal receptor recycling and is essential for peroxisome formation. Pex1/Pex6 mutations cause severe peroxisome associated developmental disorders. Despite its pathophysiological importance, mechanistic details of the heterohexamer are not yet available. Here, we report cryoEM structures of Pex1/Pex6 from Saccharomyces cerevisiae, with an endogenous protein substrate trapped in the central pore of the catalytically active second ring (D2). Pairs of Pex1/Pex6(D2) subdomains engage the substrate via a staircase of pore-1 loops with distinct properties. The first ring (D1) is catalytically inactive but undergoes significant conformational changes resulting in alternate widening and narrowing of its pore. These events are fueled by ATP hydrolysis in the D2 ring and disengagement of a "twin-seam" Pex1/Pex6(D2) heterodimer from the staircase. Mechanical forces are propagated in a unique manner along Pex1/Pex6 interfaces that are not available in homo-oligomeric AAA-ATPases. Our structural analysis reveals the mechanisms of how Pex1 and Pex6 coordinate to achieve substrate translocation.


Assuntos
Peroxissomos , ATPases Translocadoras de Prótons , Proteínas de Saccharomyces cerevisiae , ATPases Associadas a Diversas Atividades Celulares/genética , Microscopia Crioeletrônica , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato
3.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36809224

RESUMO

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Assuntos
Canal de Potássio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Sítios de Ligação , Mutação , Membrana Celular/metabolismo
4.
J Mol Biol ; 434(14): 167669, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35671830

RESUMO

The two major efflux pump systems that are involved in multidrug resistance (MDR) are (i) ATP binding cassette (ABC) transporters and (ii) secondary transporters. While the former use binding and hydrolysis of ATP to facilitate export of cytotoxic compounds, the latter utilize electrochemical gradients to expel their substrates. Pdr5 from Saccharomyces cerevisiae is a prominent member of eukaryotic ATP binding cassette (ABC) transporters that are involved in multidrug resistance (MDR) and used as a frequently studied model system. Although investigated for decades, the underlying molecular mechanisms of drug transport and substrate specificity remain elusive. Here, we provide electrophysiological data on the reconstituted Pdr5 demonstrating that this MDR efflux pump does not only actively translocate its substrates across the lipid bilayer, but at the same time generates a proton motif force in the presence of Mg2+-ATP and substrates by acting as a proton/drug co-transporter. Importantly, a strictly substrate dependent co-transport of protons was also observed in in vitro transport studies using Pdr5-enriched plasma membranes. We conclude from these results that the mechanism of MDR conferred by Pdr5 and likely other transporters is more complex than the sole extrusion of cytotoxic compounds and involves secondary coupled processes suitable to increase the effectiveness.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Resistência a Múltiplos Medicamentos , Proteínas de Saccharomyces cerevisiae , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Transporte de Íons , Bicamadas Lipídicas/metabolismo , Prótons , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Adv Sci (Weinh) ; 8(18): e2100694, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278745

RESUMO

The transport of membrane impermeable compounds into cells is a prerequisite for the efficient cellular delivery of hydrophilic and amphiphilic compounds and drugs. Transport into the cell's cytosolic compartment should ideally be controllable and it should involve biologically compatible and degradable vehicles. Addressing these challenges, nanocontainers based on cyclodextrin amphiphiles that are stabilized by a biodegradable peptide shell are developed and their potential to deliver fluorescently labeled cargo into human cells is analyzed. Host-guest mediated self-assembly of a thiol-containing short peptide or a cystamine-cross-linked polypeptide shell on cyclodextrin vesicles produce short peptide-shelled (SPSVss ) or polypeptide-shelled vesicles (PPSVss ), respectively, with redox-responsive and biodegradable features. Whereas SPSVss are permeable and less stable, PPSVss effectively encapsulate cargo and show a strictly regulated release of membrane impermeable cargo triggered by either reducing conditions or peptidase treatment. Live cell experiments reveal that the novel PPSVSS are readily internalized by primary human endothelial cells (human umbilical vein endothelial cells) and cervical cancer cells and that the reductive microenvironment of the cells' endosomes trigger release of the hydrophilic cargo into the cytosol. Thus, PPSVSS represent a highly efficient, biodegradable, and tunable system for overcoming the plasma membrane as a natural barrier for membrane-impermeable cargo.


Assuntos
Ciclodextrinas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Células Endoteliais/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/metabolismo , Humanos , Nanopartículas/metabolismo
6.
Commun Biol ; 2: 218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240256

RESUMO

Selecting particles from digital micrographs is an essential step in single-particle electron cryomicroscopy (cryo-EM). As manual selection of complete datasets-typically comprising thousands of particles-is a tedious and time-consuming process, numerous automatic particle pickers have been developed. However, non-ideal datasets pose a challenge to particle picking. Here we present the particle picking software crYOLO which is based on the deep-learning object detection system You Only Look Once (YOLO). After training the network with 200-2500 particles per dataset it automatically recognizes particles with high recall and precision while reaching a speed of up to five micrographs per second. Further, we present a general crYOLO network able to pick from previously unseen datasets, allowing for completely automated on-the-fly cryo-EM data preprocessing during data acquisition. crYOLO is available as a standalone program under http://sphire.mpg.de/ and is distributed as part of the image processing workflow in SPHIRE.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Conjuntos de Dados como Assunto , Aprendizado Profundo , Redes Neurais de Computação
7.
Elife ; 72018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29717981

RESUMO

Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology.


Assuntos
Canais de Cátion TRPC/ultraestrutura , Animais , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Molecular , Domínios Proteicos , Canais de Cátion TRPC/química , Peixe-Zebra
8.
Nat Commun ; 8(1): 1521, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142195

RESUMO

Cysteine can be synthesized by tRNA-dependent mechanism using a two-step indirect pathway, where O-phosphoseryl-tRNA synthetase (SepRS) catalyzes the ligation of a mismatching O-phosphoserine (Sep) to tRNACys followed by the conversion of tRNA-bounded Sep into cysteine by Sep-tRNA:Cys-tRNA synthase (SepCysS). In ancestral methanogens, a third protein SepCysE forms a bridge between the two enzymes to create a ternary complex named the transsulfursome. By combination of X-ray crystallography, SAXS and EM, together with biochemical evidences, here we show that the three domains of SepCysE each bind SepRS, SepCysS, and tRNACys, respectively, which mediates the dynamic architecture of the transsulfursome and thus enables a global long-range channeling of tRNACys between SepRS and SepCysS distant active sites. This channeling mechanism could facilitate the consecutive reactions of the two-step indirect pathway of Cys-tRNACys synthesis (tRNA-dependent cysteine biosynthesis) to prevent challenge of translational fidelity, and may reflect the mechanism that cysteine was originally added into genetic code.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas Arqueais/metabolismo , Cisteína/metabolismo , RNA de Transferência de Cisteína/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Código Genético/genética , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Mutação , Fosfosserina/química , Fosfosserina/metabolismo , Ligação Proteica , Conformação Proteica , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , Espalhamento a Baixo Ângulo
9.
Nat Chem Biol ; 11(11): 862-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436840

RESUMO

Excessive aggregation of proteins has a major impact on cell fate and is a hallmark of amyloid diseases in humans. To resolve insoluble deposits and to maintain protein homeostasis, all cells use dedicated protein disaggregation, protein folding and protein degradation factors. Despite intense recent research, the underlying mechanisms controlling this key metabolic event are not well understood. Here, we analyzed how a single factor, the highly conserved serine protease HTRA1, degrades amyloid fibrils in an ATP-independent manner. This PDZ protease solubilizes protein fibrils and disintegrates the fibrillar core structure, allowing productive interaction of aggregated polypeptides with the active site for rapid degradation. The aggregate burden in a cellular model of cytoplasmic tau aggregation is thus reduced. Mechanistic aspects of ATP-independent proteolysis and its implications in amyloid diseases are discussed.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Proteínas Recombinantes de Fusão/química , Serina Endopeptidases/química , Proteínas tau/química , Amiloide/genética , Peptídeos beta-Amiloides/genética , Transporte Biológico , Expressão Gênica , Células HEK293 , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Domínios PDZ , Fragmentos de Peptídeos/genética , Agregados Proteicos , Conformação Proteica , Proteólise , Proteínas Recombinantes de Fusão/genética , Serina Endopeptidases/genética , Proteínas tau/genética
10.
Front Zool ; 7: 14, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20465844

RESUMO

BACKGROUND: The allosteric respiratory protein hemocyanin occurs in gastropods as tubular di-, tri- and multimers of a 35 x 18 nm, ring-like decamer with a collar complex at one opening. The decamer comprises five subunit dimers. The subunit, a 400 kDa polypeptide, is a concatenation of eight paralogous functional units. Their exact topology within the quaternary structure has recently been solved by 3D electron microscopy, providing a molecular model of an entire didecamer (two conjoined decamers). Here we study keyhole limpet hemocyanin (KLH2) tridecamers to unravel the exact association mode of the third decamer. Moreover, we introduce and describe a more complex type of hemocyanin tridecamer discovered in fresh/brackish-water cerithioid snails (Leptoxis, Melanoides, Terebralia). RESULTS: The "typical" KLH2 tridecamer is partially hollow, whereas the cerithioid tridecamer is almost completely filled with material; it was therefore termed "mega-hemocyanin". In both types, the staggering angle between adjoining decamers is 36 degrees . The cerithioid tridecamer comprises two typical decamers based on the canonical 400 kDa subunit, flanking a central "mega-decamer" composed of ten unique ~550 kDa subunits. The additional ~150 kDa per subunit substantially enlarge the internal collar complex. Preliminary oxygen binding measurements indicate a moderate hemocyanin oxygen affinity in Leptoxis (p50 ~9 mmHg), and a very high affinity in Melanoides (~3 mmHg) and Terebralia (~2 mmHg). Species-specific and individual variation in the proportions of the two subunit types was also observed, leading to differences in the oligomeric states found in the hemolymph. CONCLUSIONS: In cerithioid hemocyanin tridecamers ("mega-hemocyanin") the collar complex of the central decamer is substantially enlarged and modified. The preliminary O2 binding curves indicate that there are species-specific functional differences in the cerithioid mega-hemocyanins which might reflect different physiological tolerances of these gill-breathing animals. The observed differential expression of the two subunit types of mega-hemocyanin might allow individual respiratory acclimatization. We hypothesize that mega-hemocyanin is a key character supporting the adaptive radiation and invasive capacity of cerithioid snails.

11.
J Mol Biol ; 385(3): 963-83, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19013468

RESUMO

Hemocyanins are blue copper-containing respiratory proteins in the hemolymph of many arthropods and molluscs. Molluscan hemocyanins are decamers, didecamers, or multidecamers of a 340- to 400-kDa polypeptide subunit containing seven or eight globular functional units (FUs; FU-a to FU-h), each with an oxygen-binding site. The decamers are short 35-nm hollow cylinders, with their lumen narrowed by a collar complex. Our recently published 9-A cryo-electron microscopy/crystal structure hybrid model of a 3.4-MDa cephalopod hemocyanin decamer [Nautilus pompilius hemocyanin (NpH)] revealed the pathway of the seven-FU subunit (340 kDa), 15 types of inter-FU interface, and an asymmetric collar consisting of five "arcs" (FU-g pairs). We now present a comparable hybrid model of an 8-MDa gastropod hemocyanin didecamer assembled from two asymmetric decamers [isoform keyhole limpet hemocyanin (KLH) 1 of the established immunogen KLH]. Compared to NpH, the KLH1 subunit (400 kDa) is C-terminally elongated by FU-h, which is further extended by a unique tail domain. We have found that the wall-and-arc structure of the KLH1 decamer is very similar to that of NpH. We have traced the subunit pathway and how it continues from KLH1-g to KLH1-h to form an annulus of five "slabs" (FU-h pairs) at one cylinder edge. The 15 types of inter-FU interface detected in NpH are also present in KLH1. Moreover, we have identified one arc/slab interface, two slab/slab interfaces, five slab/wall interfaces, and four decamer/decamer interfaces. The 27 interfaces are described on the basis of two subunit conformers, yielding an asymmetric homodimer. Six protrusions from the cryo-electron microscopy structure per subunit are associated with putative attachment sites for N-linked glycans, indicating a total of 120 sugar trees in KLH1. Also, putative binding sites for divalent cations have been detected. In conclusion, the present 9-A data on KLH1 confirm and substantially broaden our recent analysis of the smaller cephalopod hemocyanin and essentially solve the gastropod hemocyanin structure.


Assuntos
Biopolímeros/química , Microscopia Crioeletrônica/métodos , Hemocianinas/química , Sequência de Aminoácidos , Animais , Biopolímeros/genética , Hemocianinas/genética , Hemocianinas/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
12.
J Mol Biol ; 374(2): 465-86, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17936782

RESUMO

Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a "pearl-chain" of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O(2) molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 A cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 A resolution (FSC(1/2-bit) criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 A structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.


Assuntos
Microscopia Crioeletrônica , Hemocianinas/ultraestrutura , Modelos Moleculares , Nautilus/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Processamento de Imagem Assistida por Computador , Dados de Sequência Molecular , Octopodiformes/química , Conformação Proteica , Homologia de Sequência de Aminoácidos
13.
Micron ; 38(7): 754-65, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17204427

RESUMO

Hemocyanins are giant extracellular proteins that transport oxygen in the hemolymph of many molluscs. Molluscan hemocyanins are cylindrical decamers or didecamers of a 350-400 kDa subunit that contains seven or eight different covalently linked globular functional units (FUs), arranged in a linear manner. Each FU carries a single copper active site and reversibly binds one dioxygen molecule. As a consequence, the decamer can carry up to 70 or 80 O(2) molecules. Although complete sequence information is now available from several molluscan hemocyanins, many details of the quaternary structure are still unclear, including the topology of the 10 subunits within the decamer. Here we show 3D reconstructions from cryo-electron micrographs of the hemocyanin decamer of Nautilus pompilius (Cephalopoda) and Haliotis tuberculata (Gastropoda) at a resolution of 11A (FSC(1/2-bit) criterion). The wall structure of both hemocyanins is very similar and shows, as in previous reconstructions, three tiers with 20 functional units each that encircle the cylinder wall, and the 10 oblique minor and major wall grooves. However, the six types of wall FUs of the polypeptide subunit, termed a-b-c-d-e-f, are now for the first time individually discernable by their specific orientation, shape, and connections. Also, the internal collar complex of the decamers shows superior resolution which, in this case, reveals striking differences between the two hemocyanins. The five arcs (FU-g pairs) of the central collar (in both hemocyanins) and the five slabs (FU-h pairs) of the peripheral collar (only present in Haliotis hemocyanin), as well as their connections to the wall and to each other are now more clearly defined. The arc is attached to the wall through a feature termed the anchor, a previously undescribed structural element of the hemocyanin wall.


Assuntos
Hemocianinas/ultraestrutura , Moluscos/química , Animais , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Substâncias Macromoleculares , Modelos Moleculares , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA