Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187647

RESUMO

Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.

2.
Sci Adv ; 6(16): eaax5940, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494593

RESUMO

Cancer risk from galactic cosmic radiation exposure is considered a potential "showstopper" for a manned mission to Mars. Calculating the actual risks confronted by spaceflight crews is complicated by our limited understanding of the carcinogenic effects of high-charge, high-energy (HZE) ions, a radiation type for which no human exposure data exist. Using a mouse model of genetic diversity, we find that the histotype spectrum of HZE ion-induced tumors is similar to the spectra of spontaneous and γ-ray-induced tumors and that the genomic loci controlling susceptibilities overlap between groups for some tumor types. Where it occurs, this overlap indicates shared tumorigenesis mechanisms regardless of the type of radiation exposure and supports the use of human epidemiological data from γ-ray exposures to predict cancer risks from galactic cosmic rays.

3.
Pharmacogenomics J ; 18(2): 319-330, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28607509

RESUMO

Hematotoxicity is a life-threatening side effect of many chemotherapy regimens. Although clinical factors influence patient responses, genetic factors may also play an important role. We sought to identify genomic loci that influence chemotherapy-induced hematotoxicity by dosing Diversity Outbred mice with one of three chemotherapy drugs; doxorubicin, cyclophosphamide or docetaxel. We observed that each drug had a distinct effect on both the changes in blood cell subpopulations and the underlying genetic architecture of hematotoxicity. For doxorubicin, we mapped the change in cell counts before and after dosing and found that alleles of ATP-binding cassette B1B (Abcb1b) on chromosome 5 influence all cell populations. For cyclophosphamide and docetaxel, we found that each cell population was influenced by distinct loci, none of which overlapped between drugs. These results suggest that susceptibility to chemotherapy-induced hematotoxicity is influenced by different genes for different chemotherapy drugs.


Assuntos
Antineoplásicos/efeitos adversos , Patrimônio Genético , Predisposição Genética para Doença/genética , Doenças Hematológicas/induzido quimicamente , Doenças Hematológicas/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida/efeitos adversos , Docetaxel/efeitos adversos , Doxorrubicina/efeitos adversos , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA