Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Bioorg Chem ; 105: 104337, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33113408

RESUMO

CXCR4 chemokine receptor represents an attractive pharmacological target due to its key role in cancer metastasis and inflammatory diseases. Starting from our previously-developed pharmacophoric model, we applied a combined computational and experimental approach that led to the identification of the hydantoin alkaloids parazoanthines, isolated from the Mediterranean Sea anemone Parazoanthus axinellae, as novel CXCR4 antagonists. Parazoanthine analogues were then synthesized to evaluate the contribution of functional groups to the overall activity. Within the panel of synthesized natural and non-natural parazoanthines, parazoanthine-B was identified as the most potent CXCR4 antagonist with an IC50 value of 9.3 nM, even though all the investigated compounds were able to antagonize in vitro the down-stream effects of CXC12, albeit with variable potency and efficacy. The results of our study strongly support this class of small molecules as potent CXCR4 antagonists in tumoral pathologies characterized by an overexpression of this receptor. Furthermore, their structure-activity relationships allowed the optimization of our pharmacophoric model, useful for large-scale in silico screening.


Assuntos
Alcaloides/química , Antozoários/química , Receptores CXCR4/antagonistas & inibidores , Alcaloides/farmacologia , Animais , Antozoários/metabolismo , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Descoberta de Drogas , Humanos , Hidantoínas , Simulação de Acoplamento Molecular , Ratos , Transdução de Sinais , Relação Estrutura-Atividade
2.
Food Res Int ; 135: 109284, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527479

RESUMO

Caciotta is the name used to define a type of Italian semi-hard cheese Caciotta-type cheese. Due to the short ripening time, pasteurization is necessary to eliminate the potential pathogenic bacteria, which may be present in raw milk, causing also the reduction of ripened cheese flavor. The purpose of this research was to evaluate the effect of a selected wild Lactobacillus paracasei strain experimentally used as adjunct culture to enhance the flavour formation in a short-ripened caciotta-type cheese. An integrated polyphasic approach was used to compare the experimental and control Caciotta produced in a company located in Emilia Romagna region (Italy). It was demonstrated how the L. paracasei 4341 was able to develop in curd and cheese interacting with the acidifying commercial starter. The main acidifying starter species, were differently affected by the presence of the adjunct culture. Streptococcus thermophilus shown comparable behavior in all cheese-making step of control and experimental Caciotta, while Lactobacillus delbrueckii subsp bulgaricus, growth was slowed down by the presence of the adjunct culture during the whole ripening time. The higher amount of volatile compounds and organic acids due to the adjunct L. paracasei 4341 lead to a clear differentiation of the experimental Caciotta respect to the control, in terms of aromatic profile, color, texture and sensorial perception.


Assuntos
Queijo , Lacticaseibacillus paracasei , Queijo/análise , Microbiologia de Alimentos , Itália , Paladar
3.
Exp Cell Res ; 363(1): 48-64, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29305964

RESUMO

Cancer stem cell (CSC) self-renewing and drug resistance cause treatment failure and tumor recurrence. Osteosarcoma is an aggressive bone tumor characterized by biological and molecular heterogeneity, possibly dependent on CSCs. CSC identification in osteosarcoma and their efficient targeting are still open questions. Spontaneous canine osteosarcoma shares clinical and biological features with the human tumors, representing a model for translational studies. We characterized three CSC-enriched canine osteosarcoma cultures. In serum-free conditions, these CSC cultures grow as anchorage-independent spheroids, show mesenchymal-like properties and in vivo tumorigenicity, recapitulating the heterogeneity of the original osteosarcoma. Osteosarcoma CSCs express stem-related factors (Sox2, Oct4, CD133) and chemokine receptors and ligands (CXCR4, CXCL12) involved in tumor proliferation and self-renewal. Standard drugs for osteosarcoma treatment (doxorubicin and cisplatin) affected CSC-enriched and parental primary cultures, showing different efficacy within tumors. Moreover, metformin, a type-2 diabetes drug, significantly inhibits osteosarcoma CSC viability, migration and self-renewal and, in co-treatment with doxorubicin and cisplatin, enhances drug cytotoxicity. Collectively, we demonstrate that canine osteosarcoma primary cultures contain CSCs exhibiting distinctive sensitivity to anticancer agents, as a reliable experimental model to assay drug efficacy. We also provide proof-of-principle of metformin efficacy, alone or in combination, as pharmacological strategy to target osteosarcoma CSCs.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Metformina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/patologia
4.
Front Cell Neurosci ; 11: 312, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081734

RESUMO

Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the reciprocal tropism between CSCs and UC-MSCs grown as spheroids. In conclusion, we show that direct (cell-to-cell contact) or indirect (via the release of soluble factors) interactions between GBM CSCs and UC-MSCs in co-culture produce divergent effects on cell growth, invasion and migration, with the former mainly causing an inhibitory response and the latter a stimulatory one, involving a paracrine activation of CXCR2.

5.
Int J Food Microbiol ; 255: 32-41, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28575713

RESUMO

Parmigiano Reggiano (PR) is a raw-milk, hard cooked, long-ripened cheese of high quality and nutritional value. Long ripening times allow for extensive proteolysis of milk proteins to yield a number of peptides, some of which have potential healthy bioactive properties. This study aimed to: i) determine the peptide profile of PR cheese subjected to simulated gastrointestinal transit; ii) evaluate in vitro whether the peptides could support growth of beneficial microbial groups of the gut microbiota. PR samples were subjected to in vitro digestion, simulating oral, gastric, and duodenal transit. Liquid chromatography coupled with tandem mass spectrometry revealed that digestion caused the disappearance of the serum proteins and most of the original peptides, while 71 new peptides were found, all ranging from 2 to 24 residues. The digests were given as sole nitrogen source to pure cultures of Bifidobacterium (27 strains) and Lactobacillus (30 strains), and to bioreactor batch cultures of human gut microbiota. Most of bifidobacteria and lactobacilli grew more abundantly on PR digests than on the control peptone, and exhibited strain- or species-specific peptide preferences, as evidenced by principal component analysis. Bifidobacteria generally consumed a greater amount of peptides than lactobacilli, in terms of both the mean peptide consumption and the number of peptides consumed. For bifidobacteria, peptide preferences were very diverse, but a core of 10 peptides with 4 or 5 residues were consumed by all the strains. Lactobacilli behaved more homogenously and consumed nearly only the same 6 peptides, mostly dipeptides. The peptide preferences of the different groups of bifidobacteria and lactobacilli could not be ascribed to features such as the length of the peptide or the abundance of residues with peculiar properties (hydrophobicity, polarity, charge) and likely depend on specific proteases and/or peptide transporters preferentially recognizing specific sequence motifs. The cultures of human colonic microbiota confirmed that PR digest promoted the growth of commensal bifidobacteria. This study demonstrated that peptides derived from simulated gastrointestinal digestion of PR supported the growth of most lactobacilli and bifidobacteria.


Assuntos
Bifidobacterium/efeitos dos fármacos , Queijo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Proteínas do Leite/metabolismo , Peptídeos/farmacologia , Bifidobacterium/crescimento & desenvolvimento , Digestão , Humanos , Lactobacillus/crescimento & desenvolvimento , Proteínas do Leite/análise , Peptídeo Hidrolases/metabolismo , Peptídeos/isolamento & purificação
6.
Cytokine ; 97: 141-148, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28648868

RESUMO

Lactobacilli and bifidobacteria play a primary role in modulation of gut immunity. By considering that microbiota composition depends on various factors, including diet, we asked whether functional differences could characterize faecal populations of lactobacilli and bifidobacteria isolated from individuals with different dietary habits. 155 healthy volunteers who followed omnivorous, ovo-lacto-vegetarian or vegan diets were recruited at four Italian centres (Turin, Parma, Bologna and Bari). Faecal samples were collected; lactobacilli and bifidobacteria were isolated on selective media and their immunomodulatory activity was tested in mouse dendritic cells (DCs). Pre-incubation with lactobacilli increased LPS-induced expression of the maturation markers CD80 and CD86, whereas pre-incubation with bifidobacteria decreased such expression. Analysis of the cytokine profile indicated that strains of both genera induced down-regulation of IL-12 and up-regulation of IL-10, whereas expression of TNF-α was not modulated. Notably, analysis of anti-inflammatory potential (IL-10/IL-12 ratio) showed that lactobacilli evoked a greater anti-inflammatory effect than did bifidobacteria in the omnivorous group (P<0.05). We also found significantly reduced anti-inflammatory potential in the bacterial strains isolated from Bari's volunteers in comparison with those from the cognate groups from the other centres. In conclusion, lactobacilli and bifidobacteria showed a genus-specific ability of modulating in vitro innate immunity associated with a specific dietary habit. Furthermore, the geographical area had a significant impact on the anti-inflammatory potential of some components of faecal microbiota.


Assuntos
Bifidobacterium/imunologia , Células Dendríticas/imunologia , Dieta Vegana , Dieta , Microbioma Gastrointestinal/imunologia , Imunomodulação , Lactobacillus/imunologia , Animais , Antígeno B7-1/genética , Antígeno B7-2/genética , Bifidobacterium/isolamento & purificação , Citocinas/genética , Células Dendríticas/microbiologia , Regulação para Baixo , Fezes/microbiologia , Humanos , Interleucina-10/genética , Interleucina-12/genética , Lactobacillus/isolamento & purificação , Camundongos , Fator de Necrose Tumoral alfa/genética , Regulação para Cima , Vegetarianos
7.
Jpn J Vet Res ; 64(2): 101-12, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27506084

RESUMO

Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.


Assuntos
Doenças do Cão/metabolismo , Células-Tronco Neoplásicas/fisiologia , Osteossarcoma/veterinária , Animais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Cães , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/citologia
8.
Oncotarget ; 7(25): 38638-38657, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27229535

RESUMO

Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.


Assuntos
Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Priônicas/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Transfecção
9.
BMC Cancer ; 15: 228, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25884842

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. METHODS: Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. RESULTS: We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. CONCLUSIONS: Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias Mamárias Animais , Metformina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/farmacocinética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Cães , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Antígeno Ki-67/metabolismo , Metformina/farmacocinética , Camundongos , Fenótipo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 10(3): e0118864, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785932

RESUMO

Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.


Assuntos
Apoptose/efeitos dos fármacos , Glioblastoma/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células-Tronco Neurais/citologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ruta/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Água/química
11.
J Cell Physiol ; 229(10): 1444-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24648185

RESUMO

Adiponectin (Acrp30) is an adipocyte-secreted hormone with pleiotropic metabolic effects, whose reduced levels were related to development and progression of several malignancies. We looked at the presence of Acrp30 receptors in human glioblastomas (GBM), hypothesizing a role for Acrp30 also in this untreatable cancer. Here we demonstrate that human GBM express Acrp30 receptors (AdipoR1 and AdipoR2), which are often co-expressed in GBM samples (70% of the analyzed tumors). To investigate the effects of Acrp30 on GBM growth, we used human GBM cell lines U87-MG and U251, expressing both AdipoR1 and AdipoR2 receptors. In these cells, Acrp30 treatment inhibits DNA synthesis and cell proliferation rate, inducing arrest in G1 phase of the cell cycle. These effects were correlated to a sustained activation of ERK1/2 and Akt kinases, upon Acrp30 treatment. Our results suggest that Acrp30 may represent a novel endogenous negative regulator of GBM cell proliferation, to be evaluated for the possible development of novel pharmacological approaches.


Assuntos
Adiponectina/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Adiponectina/metabolismo , Fatores de Tempo
12.
ACS Chem Biol ; 8(12): 2762-70, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24102412

RESUMO

Here, we present a minimal hybrid ligand/receptor-based pharmacophore model (PM) for CXCR4, a chemokine receptor deeply involved in several pathologies, such as HIV infection, rheumatoid arthritis, cancer development/progression, and metastasization. This model, considerably simpler than those thus far proposed for this receptor, has been used to search for new CXCR4 inhibitors in a small marine natural product library available at ICB-CNR Institute (Pozzuoli, NA, Italy), since natural products, with their naturally selected chemical and functional diversity, represent a rich source of bioactive scaffolds; computational approaches allow searching for new scaffolds with a minimal waste of possibly precious natural product samples; and our "stripped-down" model substantially increases the probabilities of identifying potential hits even in small-sized libraries. This search, also validated by a systematic virtual screening of the same library, has led to the identification of a new CXCR4 ligand, phidianidine A (PHIA). Docking studies supported PHIA activity and suggested its possible binding modes to CXCR4. Using the CXCR4-expressing/CXCR7-negative GH4C1 cell line we show that PHIA inhibits CXCL12-induced DNA synthesis, cell migration, and ERK1/2 activation. The specificity of these effects was confirmed by the lack of PHIA activity in GH4C1 cells, in which siRNA highly reduces CXCR4 expression and the lack of cytoxicity of PHIA was also verified. Thus, PHIA represents a promising lead for a new family of CXCR4 modulators with wide margins of improvement in potency and specificity offered by the small and very simple underlying PM.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/química , Alcaloides Indólicos/farmacologia , Oxidiazóis/farmacologia , Receptores CXCR4/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Sítios de Ligação , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Moluscos/química , Oxidiazóis/química , Oxidiazóis/isolamento & purificação , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores CXCR/deficiência , Receptores CXCR/genética , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Interface Usuário-Computador
13.
Toxicology ; 314(2-3): 209-20, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24157575

RESUMO

Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor.


Assuntos
Comunicação Autócrina/fisiologia , Quimiocina CXCL12/biossíntese , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Comunicação Parácrina/fisiologia , Receptores CXCR4/biossíntese , Animais , Comunicação Autócrina/efeitos dos fármacos , Benzilaminas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Quimiocina CXCL12/antagonistas & inibidores , Ciclamos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Compostos Heterocíclicos/farmacologia , Humanos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores
14.
Int J Pept ; 2013: 926295, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23476673

RESUMO

Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1-5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed.

15.
Cell Cycle ; 12(1): 145-56, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255107

RESUMO

Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.


Assuntos
Antineoplásicos/toxicidade , Metformina/toxicidade , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antígeno AC133 , Idoso , Animais , Antígenos CD/metabolismo , Antineoplásicos/uso terapêutico , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Sangue Fetal/citologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicoproteínas/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Metformina/uso terapêutico , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Peptídeos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transplante Heterólogo , Células Tumorais Cultivadas
16.
Clin Endocrinol (Oxf) ; 76(3): 407-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21848909

RESUMO

CONTEXT: First-line therapy for thyrotropin-secreting pituitary adenomas (TSHomas) is neurosurgery, while medical treatment rests mainly on somatostatin analogues. Clinically available sst(2) -preferring analogues, octreotide and lanreotide, induce normalization of hormone levels in approximately 90% of patients and tumour shrinkage in 45%. OBJECTIVE: We evaluated somatostatin 1, 2, 3 and 5 and dopamine D2 receptor expression in tumour samples from three TSHomas, and the relationships between receptor expression, in vitro antiproliferative response and clinical data, including octreotide test and three months of therapy with octreotide long-acting repeatable (LAR). TSHoma cell proliferation was tested in vitro using octreotide, cabergoline and two chimeric compounds, BIM-23A760 and BIM-23A387. RESULTS: All patients showed significant TSH lowering to acute octreotide test, but a hormonal response to long-term treatment was observed in only two patients, showing a high sst(5) /sst(2) ratio. Patient 2, characterized by high expression of sst(2) and sst(1) and a relative lower expression of sst(5) , experienced tachyphylaxis after prolonged octreotide treatment. In vitro, the somatostatin/dopamine receptor agonist BIM-23A760 caused the highest antiproliferative effect among those tested. Combined treatment with octreotide and cabergoline displayed an additive effect of magnitude comparable to that of the other chimeric compound (BIM-23A387). Octreotide resistance was confirmed in cells isolated from the nonresponder patient, although it could be overcome by treatment with the chimeric compounds. CONCLUSIONS: A high sst(5) /sst(2) ratio might be predictive of a positive outcome to long-term treatment with somatostatin analogues in TSHomas. Moreover, combined somatostatin and D(2) receptor targeting might be considered as a potential tool to improve the response rate in octreotide-resistant tumours.


Assuntos
Adenoma/tratamento farmacológico , Agonistas de Dopamina/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Receptores de Dopamina D2/genética , Receptores de Somatostatina/genética , Somatostatina/uso terapêutico , Adenoma/genética , Adenoma/metabolismo , Adulto , Cabergolina , Proliferação de Células/efeitos dos fármacos , Dopamina/análogos & derivados , Dopamina/farmacologia , Dopamina/uso terapêutico , Agonistas de Dopamina/farmacologia , Sinergismo Farmacológico , Ergolinas/farmacologia , Ergolinas/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , Octreotida/farmacologia , Octreotida/uso terapêutico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Somatostatina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Tireotropina/sangue , Tireotropina/metabolismo , Tiroxina/sangue , Resultado do Tratamento , Tri-Iodotironina/sangue , Células Tumorais Cultivadas
17.
Biochem Pharmacol ; 82(10): 1467-77, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21787763

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive chemotherapy-resistant cancer. Up-regulation of epidermal growth factor receptor (EGFR) plays an important role in MPM development and EGFR-tyrosine kinase inhibitors (TKIs) may represent novel therapeutic options. We tested the effects of the EGFR TKIs gefitinib and erlotinib and TKIs targeted to other growth factors (VEGFR and PDGFR), in comparison to standard antineoplastic agents, in two human MPM cell lines, IST-Mes2 and ZL55. All drugs showed IC(50) values in the micromolar range: TKIs induced cytostatic effects at concentrations up to the IC(50,) while conventional drug growth-inhibitory activity was mainly cytotoxic. Moreover, the treatment of IST-Mes2 with TKIs (gefitinib and imatinib mesylate) in combination with cisplatin and gemcitabine did not show additivity. Focusing on the molecular mechanisms underlying the antiproliferative and pro-apoptotic effects of EGFR-TKIs, we observed that gefitinib induced the formation and stabilization of inactive EGFR homodimers, even in absence of EGF, as demonstrated by EGFR B(max) and number of sites/cell. The analysis of downstream effectors of EGFR signaling demonstrated that EGF-induced proliferation, reverted by gefitinib, involved ERK1/2 activation, independently from Akt pathway. Gefitinib inhibits MPM cell growth and survival, preventing EGF-dependent activation of ERK1/2 pathway by blocking EGFR-TK phosphorylation and stabilizing inactive EGFR dimers. Along with the molecular definition of TKIs pharmacological efficacy in vitro, these results may contribute to delve deep into the promising but still controversial role for targeted and conventional drugs in the therapy of MPM.


Assuntos
Antineoplásicos/farmacologia , Mesotelioma/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mesotelioma/patologia , Neoplasias Pleurais/patologia
18.
J Neuroimmunol ; 234(1-2): 115-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21316111

RESUMO

CXCR4 and CXCR7 chemokine receptors, and their ligands CXCL11 and CXCL12, have been often involved in tumor cell proliferation and survival. We report the expression pattern of these ligand/receptor pairs in 22 human meningiomas. High CXCR7 and CXCL12 expression was associated with high-proliferative tumors. CXCR7 levels were correlated to the content of both ligands, suggesting a possible autocrine regulation. CXCR4 and CXCL12 were homogeneously expressed within tumor cells, while CXCR7 was mainly detected in tumor endothelial cells and CXCL11 in pericytes. Our results highlight the preferential CXCR7 and CXCL12 expression within more aggressive tumors and the possible role of CXCR7 in meningioma vascularization.


Assuntos
Vasos Sanguíneos/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/patologia , Receptores CXCR/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD34/metabolismo , Vasos Sanguíneos/patologia , Dura-Máter/metabolismo , Células Endoteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Indóis , Antígeno Ki-67/metabolismo , Masculino , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Microvasos , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Receptores CXCR/classificação , Receptores CXCR/genética , Estatística como Assunto
19.
FASEB J ; 24(10): 4033-46, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20581224

RESUMO

Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted susceptibility to the effects of antiblastic drugs used in NB therapy. Altogether, these results suggest the induction of NDM29 expression as possible treatment to increase cancer cells vulnerability to therapeutics and the measure of its synthesis in NB explants as prognostic factor of this cancer type.


Assuntos
Elementos Alu , Diferenciação Celular/genética , Neuroblastoma/patologia , Sequência de Bases , Adesão Celular , Ciclo Celular , Primers do DNA , Regulação para Baixo , Imunofluorescência , Humanos , Células Tumorais Cultivadas
20.
Curr Cancer Drug Targets ; 10(2): 176-91, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20088784

RESUMO

Altered EGFR activity is a causal factor for human tumor development, including malignant pleural mesotheliomas. The aim of the present study was the evaluation of the effects of Gefitinib on EGF-induced mesothelioma cell proliferation and the intracellular mechanisms involved. Cell proliferation, DNA synthesis and apoptosis were measured by MTT, thymidine incorporation and FACS analysis; EGFR, ERK1/2 and Akt expression and phosphorylation by Western blot, whereas receptor sites were analyzed by binding studies. Gefitinib inhibited EGF-induced proliferation in two mesothelioma cell lines, derived from pleural effusion (IST-Mes2) or tumor biopsy (ZL55). The treatment with Gefitinib induced cell cycle arrest in both cell lines, while apoptosis was observed only for high concentrations and prolonged drug exposure. EGF-dependent mesothelioma cell proliferation was mediated by EGFR and ERK1/2 phosphorylation, while Akt was not affected. Gefitinib inhibited both EGFR and ERK1/2 activation, being maximal at drug concentrations that induce cytostatic effects, suggesting that the proapoptotic activity of Gefitinib is independent from EGFR inhibition. Gefitinib treatment increased EGFR Bmax, possibly through membrane stabilization of inactive receptor dimers that we show to be induced by the drug also in the absence of EGF. EGFR activation of ERK1/2 represents a key pathway for pleural mesothelioma cell proliferation. Low concentrations of Gefitinib cause mesothelioma cell cycle arrest through the blockade of EGFR activity while high concentrations induce apoptosis. Finally, we propose that the formation of inactive EGFR dimers may contribute to the antitumoral activity of Gefitinib.


Assuntos
Receptores ErbB/metabolismo , Mesotelioma/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Quinazolinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Receptores ErbB/antagonistas & inibidores , Imunofluorescência , Gefitinibe , Humanos , Mesotelioma/metabolismo , Mesotelioma/patologia , Fosforilação/efeitos dos fármacos , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA