Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1221, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874546

RESUMO

Inherited and age-related retinal degenerative diseases cause progressive loss of rod and cone photoreceptors, leading to blindness, but spare downstream retinal neurons, which can be targeted for optogenetic therapy. However, optogenetic approaches have been limited by either low light sensitivity or slow kinetics, and lack adaptation to changes in ambient light, and not been shown to restore object vision. We find that the vertebrate medium wavelength cone opsin (MW-opsin) overcomes these limitations and supports vision in dim light. MW-opsin enables an otherwise blind retinitis pigmenotosa mouse to discriminate temporal and spatial light patterns displayed on a standard LCD computer tablet, displays adaption to changes in ambient light, and restores open-field novel object exploration under incidental room light. By contrast, rhodopsin, which is similar in sensitivity but slower in light response and has greater rundown, fails these tests. Thus, MW-opsin provides the speed, sensitivity and adaptation needed to restore patterned vision.


Assuntos
Cegueira/prevenção & controle , Opsinas dos Cones/genética , Terapia Genética/métodos , Optogenética/métodos , Degeneração Retiniana/terapia , Animais , Cegueira/etiologia , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Injeções Intravítreas , Queratinócitos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Rodopsina/genética , Resultado do Tratamento
2.
Methods Mol Biol ; 1715: 177-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29188513

RESUMO

In retinal disease, despite the loss of light sensitivity as photoreceptors die, many retinal interneurons survive in a physiologically and metabolically functional state for long periods. This provides an opportunity for treatment by genetically adding a light sensitive function to these cells. Optogenetic therapies are in development, but, to date, they have suffered from low light sensitivity and narrow dynamic response range of microbial opsins. Expression of light-sensitive G protein coupled receptors (GPCRs), such as vertebrate rhodopsin , can increase sensitivity by signal amplification , as shown by several groups. Here, we describe the methods to (1) express light gated GPCRs in retinal neurons, (2) record light responses in retinal explants in vitro, (3) record cortical light responses in vivo, and (4) test visually guided behavior in treated mice.


Assuntos
Terapia Genética/métodos , Neurônios/metabolismo , Optogenética/métodos , Retina/metabolismo , Doenças Retinianas/terapia , Rodopsina/genética , Animais , Comportamento Animal , Luz , Camundongos , Camundongos Endogâmicos C57BL , Doenças Retinianas/genética
3.
Nano Lett ; 17(3): 2064-2072, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28164706

RESUMO

Piezo receptors convert mechanical forces into electrical signals. In mammals, they play important roles in basic physiological functions including proprioception, sensation of touch, and vascular development. However, basic receptor properties like the gating mechanism, the interaction with extracellular matrix (ECM) proteins, and the response to mechanical stimulation, remain poorly understood. Here, we establish an atomic force microscopy (AFM)-based assay to mechanically stimulate Piezo1 receptors in living animal cells, while monitoring receptor activation in real-time using functional calcium imaging. Our experiments show that in the absence of ECM proteins Piezo1 receptors are relatively insensitive to mechanical forces pushing the cellular membrane, whereas they can hardly be activated by mechanically pulling the membrane. Yet, if conjugated with Matrigel, a mix of ECM proteins, the receptors become sensitized. Thereby, forces pulling the cellular membrane activate the receptor much more efficiently compared to pushing forces. Finally, we found that collagen IV, a component of the basal lamina, which forms a cohesive network and mechanical connection between cells, sensitizes Piezo1 receptors to mechanical pulling.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Canais Iônicos/metabolismo , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo IV/metabolismo , Células HEK293 , Humanos , Mecanotransdução Celular , Camundongos , Microscopia de Força Atômica/métodos , Microscopia Confocal/métodos
4.
Mol Ther ; 23(10): 1562-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26137852

RESUMO

Retinal disease is one of the most active areas of gene therapy, with clinical trials ongoing in the United States for five diseases. There are currently no treatments for patients with late-stage disease in which photoreceptors have been lost. Optogenetic gene therapies are in development, but, to date, have suffered from the low light sensitivity of microbial opsins, such as channelrhodopsin and halorhodopsin, and azobenzene-based photoswitches. Several groups have shown that photoreceptive G-protein-coupled receptors (GPCRs) can be expressed heterologously, and photoactivate endogenous Gi/o signaling. We hypothesized such a GPCR could increase sensitivity due to endogenous signal amplification. We targeted vertebrate rhodopsin to retinal ON-bipolar cells of blind rd1 mice and observed restoration of: (i) light responses in retinal explants, (ii) visually-evoked potentials in visual cortex in vivo, and (iii) two forms of visually-guided behavior: innate light avoidance and discrimination of temporal light patterns in the context of fear conditioning. Importantly, both the light responses of the retinal explants and the visually-guided behavior occurred reliably at light levels that were two to three orders of magnitude dimmer than required for channelrhodopsin. Thus, gene therapy with native light-gated GPCRs presents a novel approach to impart light sensitivity for visual restoration in a useful range of illumination.


Assuntos
Optogenética/métodos , Rodopsina/genética , Visão Ocular/genética , Animais , Dependovirus/genética , Expressão Ectópica do Gene , Potenciais Evocados Visuais/genética , Potenciais Evocados Visuais/efeitos da radiação , Terapia Genética , Vetores Genéticos/genética , Luz , Camundongos , Estimulação Luminosa , Retina/citologia , Retina/metabolismo , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Transdução Genética , Percepção Visual
5.
Proc Natl Acad Sci U S A ; 111(51): E5574-83, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489083

RESUMO

Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0(460)). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0(460) was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0(460) was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0(460) in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0(460) in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0(460) was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/efeitos da radiação , Luz , Células Ganglionares da Retina/efeitos da radiação , Visão Ocular , Animais , Cegueira/fisiopatologia , Canais Iônicos/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA