Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35205709

RESUMO

An elevated neutrophil-lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy.

2.
Br J Cancer ; 122(2): 258-265, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819193

RESUMO

BACKGROUND: Epidemiological studies suggest that metformin may reduce the incidence of cancer in patients with diabetes and multiple late phase clinical trials assessing the potential of repurposing this drug are underway. Transcriptomic profiling of tumour samples is an excellent tool to understand drug bioactivity, identify candidate biomarkers and assess for mechanisms of resistance to therapy. METHODS: Thirty-six patients with untreated primary breast cancer were recruited to a window study and transcriptomic profiling of tumour samples carried out before and after metformin treatment. RESULTS: Multiple genes that regulate fatty acid oxidation were upregulated at the transcriptomic level and there was a differential change in expression between two previously identified cohorts of patients with distinct metabolic responses. Increase in expression of a mitochondrial fatty oxidation gene composite signature correlated with change in a proliferation gene signature. In vitro assays showed that, in contrast to previous studies in models of normal cells, metformin reduces fatty acid oxidation with a subsequent accumulation of intracellular triglyceride, independent of AMPK activation. CONCLUSIONS: We propose that metformin at clinical doses targets fatty acid oxidation in cancer cells with implications for patient selection and drug combinations. CLINICAL TRIAL REGISTRATION: NCT01266486.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ácidos Graxos/metabolismo , Metformina/farmacologia , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
3.
Cell Metab ; 28(5): 679-688.e4, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30244975

RESUMO

Late-phase clinical trials investigating metformin as a cancer therapy are underway. However, there remains controversy as to the mode of action of metformin in tumors at clinical doses. We conducted a clinical study integrating measurement of markers of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired time points to profile the bioactivity of metformin in primary breast cancer. We show metformin reduces the levels of mitochondrial metabolites, activates multiple mitochondrial metabolic pathways, and increases 18-FDG flux in tumors. Two tumor groups are identified with distinct metabolic responses, an OXPHOS transcriptional response (OTR) group for which there is an increase in OXPHOS gene transcription and an FDG response group with increased 18-FDG uptake. Increase in proliferation, as measured by a validated proliferation signature, suggested that patients in the OTR group were resistant to metformin treatment. We conclude that mitochondrial response to metformin in primary breast cancer may define anti-tumor effect.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Hipoglicemiantes/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metformina/farmacologia , Adulto , Idoso , Antineoplásicos/uso terapêutico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/análogos & derivados , Glucose/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Transcriptoma/efeitos dos fármacos
4.
Nat Med ; 24(11): 1691-1695, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30250142

RESUMO

Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.


Assuntos
Edição de Genes , Mitocôndrias Cardíacas/genética , Doenças Mitocondriais/genética , Nucleases de Dedos de Zinco/genética , Animais , DNA Mitocondrial/genética , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Camundongos , Mitocôndrias Cardíacas/patologia , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Mutação/genética , Prognóstico , RNA de Transferência/genética , Nucleases de Dedos de Zinco/uso terapêutico
5.
Ecancermedicalscience ; 12: ed84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093919

RESUMO

Breath biopsy enables the non-invasive collection and analysis of volatile organic compounds (VOCs) in exhaled breath, providing valuable information about disease processes occurring in the body. Metabolic changes occur in cancer cells at the earliest stages of disease. We discuss progress in the use of breath biopsy for discovery of breath-based biomarkers for early detection of cancer, and potential applications for breath biopsy in enabling precision medicine in cancer.

6.
Cell Rep ; 24(5): 1093-1104.e6, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30067967

RESUMO

Renal cell carcinomas (RCCs) are common cancers diagnosed in more than 350,000 people each year worldwide. Several pathways are de-regulated in RCCs, including mTORC1. However, how mTOR drives tumorigenesis in this context is unknown. The lack of faithful animal models has limited progress in understanding and targeting RCCs. Here, we generated a mouse model harboring the kidney-specific inactivation of Tsc1. These animals develop cysts that evolve into papillae, cystadenomas, and papillary carcinomas. Global profiling confirmed several metabolic derangements previously attributed to mTORC1. Notably, Tsc1 inactivation results in the accumulation of fumarate and in mTOR-dependent downregulation of the TCA cycle enzyme fumarate hydratase (FH). The re-expression of FH in cellular systems lacking Tsc1 partially rescued renal epithelial transformation. Importantly, the mTORC1-FH axis is likely conserved in human RCC specimens. We reveal a role of mTORC1 in renal tumorigenesis, which depends on the oncometabolite fumarate.


Assuntos
Carcinoma de Células Renais/metabolismo , Fumaratos/metabolismo , Neoplasias Renais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Células Cultivadas , Feminino , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
7.
Mol Cell ; 69(4): 581-593.e7, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452638

RESUMO

The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.


Assuntos
Citosol/metabolismo , Glutamina/metabolismo , Malato Desidrogenase/metabolismo , Mitocôndrias/patologia , NAD/metabolismo , Osteossarcoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Movimento Celular , Ciclo do Ácido Cítrico , DNA Mitocondrial/genética , Metabolismo Energético , Feminino , Glucose/metabolismo , Glicólise , Humanos , Mitocôndrias/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Oxirredução , Células Tumorais Cultivadas
8.
Cell Rep ; 21(4): 1036-1047, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069586

RESUMO

Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid (TCA) cycle mutated in hereditary and sporadic cancers. Despite recent advances in understanding its role in tumorigenesis, the effects of FH loss on mitochondrial metabolism are still unclear. Here, we used mouse and human cell lines to assess mitochondrial function of FH-deficient cells. We found that human and mouse FH-deficient cells exhibit decreased respiration, accompanied by a varying degree of dysfunction of respiratory chain (RC) complex I and II. Moreover, we show that fumarate induces succination of key components of the iron-sulfur cluster biogenesis family of proteins, leading to defects in the biogenesis of iron-sulfur clusters that affect complex I function. We also demonstrate that suppression of complex II activity is caused by product inhibition due to fumarate accumulation. Overall, our work provides evidence that the loss of a single TCA cycle enzyme is sufficient to cause combined RC activity dysfunction.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fumarato Hidratase/metabolismo , Animais , Linhagem Celular Tumoral , Respiração Celular , Fumarato Hidratase/deficiência , Fumarato Hidratase/genética , Fumaratos/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Camundongos
9.
Trends Endocrinol Metab ; 28(10): 748-757, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28938972

RESUMO

Altered metabolism is a distinct feature of cancer cells. During transformation, the entire metabolic network is rewired to efficiently convert nutrients to biosynthetic precursors to sustain cancer cell growth and proliferation. Whilst the molecular underpinnings of this metabolic reprogramming have been described, its role in tumor progression is still under investigation. Importantly, the mitochondrion is a central actor in many of the metabolic processes that are altered in tumors. Yet, we have only begun to understand the dualities of mitochondrial function during cancer metastasis and therapy resistance. Paradoxically, mitochondrial metabolism can be both advantageous and detrimental to these processes, highlighting the need for a better understanding of the molecular and microenvironmental cues that define the role of this fascinating organelle. In this review article, we present an updated view on the different mitochondrial metabolic strategies adopted by cancer cells to overcome the many hurdles faced during tumor progression.


Assuntos
Transformação Celular Neoplásica/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Progressão da Doença , Metabolismo Energético/fisiologia , Humanos , Redes e Vias Metabólicas/fisiologia
10.
Nat Commun ; 7: 13041, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721378

RESUMO

Cancer cells undergo a multifaceted rewiring of cellular metabolism to support their biosynthetic needs. Although the major determinants of this metabolic transformation have been elucidated, their broad biological implications and clinical relevance are unclear. Here we systematically analyse the expression of metabolic genes across 20 different cancer types and investigate their impact on clinical outcome. We find that cancers undergo a tissue-specific metabolic rewiring, which converges towards a common metabolic landscape. Of note, downregulation of mitochondrial genes is associated with the worst clinical outcome across all cancer types and correlates with the expression of epithelial-to-mesenchymal transition gene signature, a feature of invasive and metastatic cancers. Consistently, suppression of mitochondrial genes is identified as a key metabolic signature of metastatic melanoma and renal cancer, and metastatic cell lines. This comprehensive analysis reveals unexpected facets of cancer metabolism, with important implications for cancer patients' stratification, prognosis and therapy.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Neoplasias/genética , Especificidade de Órgãos , Fosforilação Oxidativa , Análise de Sobrevida , Resultado do Tratamento
11.
Nature ; 537(7621): 544-547, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27580029

RESUMO

Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.


Assuntos
Epigênese Genética , Transição Epitelial-Mesenquimal , Fumaratos/metabolismo , Animais , Movimento Celular , Células Cultivadas , Fumarato Hidratase/deficiência , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Células HEK293 , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Mesoderma/metabolismo , Camundongos , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Transcriptoma
12.
J Neuroinflammation ; 13(1): 232, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590826

RESUMO

BACKGROUND: Neural stem cells (NSCs) display tissue trophic and immune modulatory therapeutic activities after transplantation in central nervous system disorders. The intercellular interplay between stem cells and target immune cells is increased in NSCs exposed to inflammatory cues. Here, we hypothesize that inflammatory cytokine signalling leads to metabolic reprogramming of NSCs regulating some of their immune modulatory effects. METHODS: NSC lines were prepared from the subventricular zone (SVZ) of 7-12-week-old mice. Whole secretome-based screening and analysis of intracellular small metabolites was performed in NSCs exposed to cocktails of either Th1-like (IFN-γ, 500 U/ml; TNF-α, 200 U/ml; IL-1ß, 100 U/ml) or Th2-like (IL-4, IL-5 and IL-13; 10 ng/ml) inflammatory cytokines for 16 h in vitro. Isotopologues distribution of arginine and downstream metabolites was assessed by liquid chromatography/mass spectrometry in NSCs incubated with U-(13)C6 L-arginine in the presence or absence of Th1 or Th2 cocktails (Th1 NSCs or Th2 NSCs). The expression of arginase I and II was investigated in vitro in Th1 NSCs and Th2 NSCs and in vivo in the SVZ of mice with experimental autoimmune encephalomyelitis, as prototypical model of Th1 cell-driven brain inflammatory disease. The effects of the inflammatory cytokine signalling were studied in NSC-lymph node cells (LNC) co-cultures by flow cytometry-based analysis of cell proliferation following pan-arginase inhibition with N(ω)-hydroxy-nor-arginine (nor-NOHA). RESULTS: Cytokine-primed NSCs showed significantly higher anti-proliferative effect in co-cultures vs. control NSCs. Metabolomic analysis of intracellular metabolites revealed alteration of arginine metabolism and increased extracellular arginase I activity in cytokine-primed NSCs. Arginase inhibition by nor-NOHA partly rescued the anti-proliferative effects of cytokine-primed NSCs. CONCLUSIONS: Our work underlines the use of metabolic profiling as hypothesis-generating tools that helps unravelling how stem cell-mediated mechanisms of tissue restoration become affected by local inflammatory responses. Among different therapeutic candidates, we identify arginase signalling as novel metabolic determinant of the NSC-to-immune system communication.


Assuntos
Arginina/metabolismo , Citocinas/metabolismo , Fatores Imunológicos/metabolismo , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/metabolismo , Animais , Arginase/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Colorimetria , Citocinas/farmacologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Ventrículos Laterais/citologia , Metabolômica , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
Nucleic Acids Res ; 44(16): 7804-16, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27466392

RESUMO

Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases.


Assuntos
DNA Mitocondrial/genética , Endonucleases/metabolismo , Mitocôndrias/metabolismo , Mutação/genética , Dedos de Zinco , Linhagem Celular Tumoral , Citometria de Fluxo , Dosagem de Genes , Humanos , RNA Catalítico/metabolismo
14.
Sci Rep ; 6: 22950, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26972697

RESUMO

The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours.


Assuntos
Hidrolases/farmacologia , Neoplasias/tratamento farmacológico , Óxido Nítrico/biossíntese , Polietilenoglicóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Arginina/metabolismo , Argininossuccinato Sintase/antagonistas & inibidores , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Hipóxia Celular , Linhagem Celular Tumoral , Células HCT116 , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos SCID , Complexos Multiproteicos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Perfusão , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Nature ; 531(7592): 110-3, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909577

RESUMO

The RAS/MAPK (mitogen-activated protein kinase) signalling pathway is frequently deregulated in non-small-cell lung cancer, often through KRAS activating mutations. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations. We recently showed that advanced lung tumours from Kras(G12D/+);p53-null mice frequently exhibit Kras(G12D) allelic enrichment (Kras(G12D)/Kras(wild-type) > 1) (ref. 7), implying that mutant Kras copy gains are positively selected during progression. Here we show, through a comprehensive analysis of mutant Kras homozygous and heterozygous mouse embryonic fibroblasts and lung cancer cells, that these genotypes are phenotypically distinct. In particular, Kras(G12D/G12D) cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the tricarboxylic acid cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous non-small-cell lung cancer cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of Kras(G12D) copy gain), but not in the corresponding early tumours (Kras(G12D) heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprising two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated on the basis of their relative mutant allelic content. We also provide the first, to our knowledge, in vivo evidence of metabolic rewiring during lung cancer malignant progression.


Assuntos
Variações do Número de Cópias de DNA/genética , Genes ras/genética , Glucose/metabolismo , Glicólise , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mutação/genética , Alelos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ciclo do Ácido Cítrico , Progressão da Doença , Feminino , Fibroblastos/metabolismo , Genótipo , Glutationa/biossíntese , Glutationa/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Oxirredução , Fenótipo , Prognóstico
17.
Nat Mater ; 15(2): 227-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595121

RESUMO

The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples that are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with those of tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia.


Assuntos
Neoplasias/metabolismo , Oxigênio/metabolismo , Engenharia Tecidual , Alicerces Teciduais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais
18.
Oncotarget ; 6(30): 30102-14, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26337086

RESUMO

The mechanisms of cisplatin resistance, one of the major limitations of current chemotherapy, has only partially been described. We previously demonstrated that cisplatin-resistant ovarian cancer cells (C13), are characterized by reduced mitochondrial activity and higher glucose-dependency when compared to the cisplatin-sensitive counterpart (2008). In this work we further characterized the role of metabolic transformation in cisplatin resistance. By using transmitochondrial hybrids we show that metabolic reprogramming of cisplatin-resistant cell is not caused by inherent mtDNA mutations. We also found that C13 cells not only present an increased glucose-uptake and consumption, but also exhibit increased expression and enzymatic activity of the Pentose Phosphate pathway (PPP) enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH). Moreover, we show that cisplatin-resistant cells are more sensitive to G6PDH inhibition. Even if the metabolomic fingerprint of ovarian cancer cells remains to be further elucidated, these findings indicate that PPP offers innovative potential targets to overcome cisplatin resistance.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , DNA Mitocondrial/genética , Relação Dose-Resposta a Droga , Feminino , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glutamina/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
19.
Nat Commun ; 6: 6001, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613188

RESUMO

Mutations in the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of fumarate caused by the inactivation of FH leads to oxidative stress that is mediated by the formation of succinicGSH, a covalent adduct between fumarate and glutathione. Chronic succination of GSH, caused by the loss of FH, or by exogenous fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of p21, a key mediator of senescence, in Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that fumarate-induced senescence needs to be bypassed for the initiation of renal cancers.


Assuntos
Fumaratos/química , Glutationa/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica , Senescência Celular , Cromatografia Líquida , Biologia Computacional , Feminino , Fibroblastos/metabolismo , Fumarato Hidratase/química , Glutamina/química , Imuno-Histoquímica , Rim/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Oxirredução , Estresse Oxidativo , Transcriptoma
20.
Elife ; 32014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25415239

RESUMO

Utilizing molecular data to derive functional physiological models tailored for specific cancer cells can facilitate the use of individually tailored therapies. To this end we present an approach termed PRIME for generating cell-specific genome-scale metabolic models (GSMMs) based on molecular and phenotypic data. We build >280 models of normal and cancer cell-lines that successfully predict metabolic phenotypes in an individual manner. We utilize this set of cell-specific models to predict drug targets that selectively inhibit cancerous but not normal cell proliferation. The top predicted target, MLYCD, is experimentally validated and the metabolic effects of MLYCD depletion investigated. Furthermore, we tested cell-specific predicted responses to the inhibition of metabolic enzymes, and successfully inferred the prognosis of cancer patients based on their PRIME-derived individual GSMMs. These results lay a computational basis and a counterpart experimental proof of concept for future personalized metabolic modeling applications, enhancing the search for novel selective anticancer therapies.


Assuntos
Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Algoritmos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carboxiliases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Graxos/biossíntese , Técnicas de Silenciamento de Genes , Genoma Humano , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Neoplasias/tratamento farmacológico , Oxirredução/efeitos dos fármacos , Fenótipo , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA