Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Eur J Obstet Gynecol Reprod Biol ; 300: 224-229, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032311

RESUMO

BACKGROUND: Recent studies have suggested that pregnancy accelerates biologic aging, yet little is known about how biomarkers of aging are affected by events during the peripartum period. Given that immune shifts are known to occur following surgery, we explored the relation between mode of delivery and postpartum maternal leukocyte telomere length (LTL), a marker of biologic aging. STUDY DESIGN: Postpartum maternal blood samples were obtained from a prospective cohort of term, singleton livebirths without hypertensive disorders or peripartum infections between 2012 and 2018. The primary outcome was postpartum LTLs from one blood sample drawn between postpartum week 1 and up to 6 months postpartum, measured from thawed frozen peripheral blood mononuclear cells using quantitative PCR in basepairs (bp). Multivariable linear regression models compared LTLs between vaginal versus cesarean births, adjusting for age, body mass index, and nulliparity as potential confounders. Analyses were conducted in two mutually exclusive groups: those with LTL measured postpartum week 1 and those measured up to 6 months postpartum. Secondarily, we compared multiomics by mode of delivery using machine-learning methods to evaluate whether other biologic changes occurred following cesarean. These included transcriptomics, metabolomics, microbiomics, immunomics, and proteomics (serum and plasma). RESULTS: Of 67 included people, 50 (74.6 %) had vaginal and 17 (25.4 %) had cesarean births. LTLs were significantly shorter after cesarean in postpartum week 1 (5755.2 bp cesarean versus 6267.8 bp vaginal, p = 0.01) as well as in the later draws (5586.6 versus 5945.6 bp, p = 0.04). After adjusting for confounders, these differences persisted in both week 1 (adjusted beta -496.1, 95 % confidence interval [CI] -891.1, -101.1, p = 0.01) and beyond (adjusted beta -396.8; 95 % CI -727.2, -66.4. p = 0.02). Among the 15 participants who also had complete postpartum multiomics data available, there were predictive signatures of vaginal versus cesarean births in transcriptomics (cell-free [cf]RNA), metabolomics, microbiomics, and proteomics that did not persist after false discovery correction. CONCLUSION: Maternal LTLs in postpartum week 1 were nearly 500 bp shorter following cesarean. This difference persisted several weeks postpartum, even though other markers of inflammation had normalized. Mode of delivery should be considered in any analyses of postpartum LTLs and further investigation into this phenomenon is warranted.


Assuntos
Cesárea , Parto Obstétrico , Leucócitos , Período Pós-Parto , Humanos , Feminino , Adulto , Gravidez , Estudos Prospectivos , Telômero
2.
Anaesth Crit Care Pain Med ; 43(4): 101387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38710325

RESUMO

BACKGROUND: Preventive anesthetic impact on the high rates of postoperative neurocognitive disorders in elderly patients is debated. The Prevention of postOperative Cognitive dysfunction by Ketamine (POCK) study aimed to assess the effect of ketamine on this condition. METHODS: This is a multicenter, randomized, double-blind, interventional study. Patients ≥60 years undergoing major orthopedic surgery were randomly assigned in a 1:1 ratio to receive preoperative ketamine 0.5 mg/kg as an intravenous bolus (n = 152) or placebo (n = 149) in random blocks stratified according to the study site, preoperative cognitive status and age. The primary outcome was the proportion of objective delayed neurocognitive recovery (dNR) defined as a decline of one or more neuropsychological assessment standard deviations on postoperative day 7. Secondary outcomes included a three-month incidence of objective postoperative neurocognitive disorder (POND), as well as delirium, anxiety, and symptoms of depression seven days and three months after surgery. RESULTS: Among 301 patients included, 292 (97%) completed the trial. Objective dNR occurred in 50 (38.8%) patients in the ketamine group and 54 (40.9%) patients in the placebo group (OR [95% CI] 0.92 [0.56; 1.51], p = 0.73) on postoperative day 7. Incidence of objective POND three months after surgery did not differ significantly between the two groups nor did incidence of delirium, anxiety, apathy, and fatigue. Symptoms of depression were less frequent in the ketamine group three months after surgery (OR [95% CI] 0.34 [0.13-0.86]). CONCLUSIONS: A single preoperative bolus of intravenous ketamine does not prevent the occurrence of dNR or POND in elderly patients scheduled for major orthopedic surgery. (Clinicaltrials.gov NCT02892916).


Assuntos
Ketamina , Procedimentos Ortopédicos , Complicações Cognitivas Pós-Operatórias , Cuidados Pré-Operatórios , Humanos , Ketamina/administração & dosagem , Ketamina/uso terapêutico , Método Duplo-Cego , Idoso , Masculino , Feminino , Procedimentos Ortopédicos/efeitos adversos , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Cuidados Pré-Operatórios/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/epidemiologia , Transtornos Neurocognitivos/prevenção & controle , Testes Neuropsicológicos , Delírio/prevenção & controle
3.
Sci Adv ; 10(15): eadm8841, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608023

RESUMO

Allograft rejection is common following clinical organ transplantation, but defining specific immune subsets mediating alloimmunity has been elusive. Calcineurin inhibitor dose escalation, corticosteroids, and/or lymphocyte depleting antibodies have remained the primary options for treatment of clinical rejection episodes. Here, we developed a highly multiplexed imaging mass cytometry panel to study the immune response in archival biopsies from 79 liver transplant (LT) recipients with either no rejection (NR), acute T cell-mediated rejection (TCMR), or chronic rejection (CR). This approach generated a spatially resolved proteomic atlas of 461,816 cells (42 phenotypes) derived from 96 pathologist-selected regions of interest. Our analysis revealed that regulatory (HLADR+ Treg) and PD1+ T cell phenotypes (CD4+ and CD8+ subsets), combined with variations in M2 macrophage polarization, were a unique signature of active TCMR. These data provide insights into the alloimmune microenvironment in clinical LT, including identification of potential targets for focused immunotherapy during rejection episodes and suggestion of a substantial role for immune exhaustion in TCMR.


Assuntos
Exaustão do Sistema Imunitário , Transplante de Fígado , Transplante de Fígado/efeitos adversos , Proteômica , Biópsia , Imunoterapia
4.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496400

RESUMO

Postoperative cognitive decline (POCD) is the predominant complication affecting elderly patients following major surgery, yet its prediction and prevention remain challenging. Understanding biological processes underlying the pathogenesis of POCD is essential for identifying mechanistic biomarkers to advance diagnostics and therapeutics. This longitudinal study involving 26 elderly patients undergoing orthopedic surgery aimed to characterize the impact of peripheral immune cell responses to surgical trauma on POCD. Trajectory analyses of single-cell mass cytometry data highlighted early JAK/STAT signaling exacerbation and diminished MyD88 signaling post-surgery in patients who developed POCD. Further analyses integrating single-cell and plasma proteomic data collected before surgery with clinical variables yielded a sparse predictive model that accurately identified patients who would develop POCD (AUC = 0.80). The resulting POCD immune signature included one plasma protein and ten immune cell features, offering a concise list of biomarker candidates for developing point-of-care prognostic tests to personalize perioperative management of at-risk patients. The code and the data are documented and available at https://github.com/gregbellan/POCD . Teaser: Modeling immune cell responses and plasma proteomic data predicts postoperative cognitive decline.

5.
iScience ; 26(12): 108486, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125025

RESUMO

Oral squamous cell carcinoma (OSCC), a prevalent and aggressive neoplasm, poses a significant challenge due to poor prognosis and limited prognostic biomarkers. Leveraging highly multiplexed imaging mass cytometry, we investigated the tumor immune microenvironment (TIME) in OSCC biopsies, characterizing immune cell distribution and signaling activity at the tumor-invasive front. Our spatial subsetting approach standardized cellular populations by tissue zone, improving feature reproducibility and revealing TIME patterns accompanying loss-of-differentiation. Employing a machine-learning pipeline combining reliable feature selection with multivariable modeling, we achieved accurate histological grade classification (AUC = 0.88). Three model features correlated with clinical outcomes in an independent cohort: granulocyte MAPKAPK2 signaling at the tumor front, stromal CD4+ memory T cell size, and the distance of fibroblasts from the tumor border. This study establishes a robust modeling framework for distilling complex imaging data, uncovering sentinel characteristics of the OSCC TIME to facilitate prognostic biomarkers discovery for recurrence risk stratification and immunomodulatory therapy development.

6.
BJS Open ; 7(6)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108466

RESUMO

BACKGROUND: Postoperative complications occur in up to 43% of patients after surgery, resulting in increased morbidity and economic burden. Prehabilitation has the potential to increase patients' preoperative health status and thereby improve postoperative outcomes. However, reported results of prehabilitation are contradictory. The objective of this systematic review is to evaluate the effects of prehabilitation on postoperative outcomes (postoperative complications, hospital length of stay, pain at postoperative day 1) in patients undergoing elective surgery. METHODS: The authors performed a systematic review and meta-analysis of RCTs published between January 2006 and June 2023 comparing prehabilitation programmes lasting ≥14 days to 'standard of care' (SOC) and reporting postoperative complications according to the Clavien-Dindo classification. Database searches were conducted in PubMed, CINAHL, EMBASE, PsycINFO. The primary outcome examined was the effect of uni- or multimodal prehabilitation on 30-day complications. Secondary outcomes were length of ICU and hospital stay (LOS) and reported pain scores. RESULTS: Twenty-five studies (including 2090 patients randomized in a 1:1 ratio) met the inclusion criteria. Average methodological study quality was moderate. There was no difference between prehabilitation and SOC groups in regard to occurrence of postoperative complications (OR = 1.02, 95% c.i. 0.93 to 1.13; P = 0.10; I2 = 34%), total hospital LOS (-0.13 days; 95% c.i. -0.56 to 0.28; P = 0.53; I2 = 21%) or reported postoperative pain. The ICU LOS was significantly shorter in the prehabilitation group (-0.57 days; 95% c.i. -1.10 to -0.04; P = 0.03; I2 = 46%). Separate comparison of uni- and multimodal prehabilitation showed no difference for either intervention. CONCLUSION: Prehabilitation reduces ICU LOS compared with SOC in elective surgery patients but has no effect on overall complication rates or total LOS, regardless of modality. Prehabilitation programs need standardization and specific targeting of those patients most likely to benefit.


Assuntos
Dor Pós-Operatória , Exercício Pré-Operatório , Humanos , Bases de Dados Factuais , Morbidade , Complicações Pós-Operatórias/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Res Sq ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461437

RESUMO

Allograft rejection is a frequent complication following solid organ transplantation, but defining specific immune subsets mediating alloimmunity has been elusive due to the scarcity of tissue in clinical biopsy specimens. Single cell techniques have emerged as valuable tools for studying mechanisms of disease in complex tissue microenvironments. Here, we developed a highly multiplexed imaging mass cytometry panel, single cell analysis pipeline, and semi-supervised immune cell clustering algorithm to study archival biopsy specimens from 79 liver transplant (LT) recipients with histopathological diagnoses of either no rejection (NR), acute T-cell mediated rejection (TCMR), or chronic rejection (CR). This approach generated a spatially resolved proteomic atlas of 461,816 cells derived from 98 pathologist-selected regions of interest relevant to clinical diagnosis of rejection. We identified 41 distinct cell populations (32 immune and 9 parenchymal cell phenotypes) that defined key elements of the alloimmune microenvironment (AME), identified significant cell-cell interactions, and established higher order cellular neighborhoods. Our analysis revealed that both regulatory (HLA-DR+ Treg) and exhausted T-cell phenotypes (PD1+CD4+ and PD1+CD8+ T-cells), combined with variations in M2 macrophage polarization, were a unique signature of TCMR. TCMR was further characterized by alterations in cell-to-cell interactions among both exhausted immune subsets and inflammatory populations, with expansion of a CD8 enriched cellular neighborhood comprised of Treg, exhausted T-cell subsets, proliferating CD8+ T-cells, and cytotoxic T-cells. These data enabled creation of a predictive model of clinical outcomes using a subset of cell types to differentiate TCMR from NR (AUC = 0.96 ± 0.04) and TCMR from CR (AUC = 0.96 ± 0.06) with high sensitivity and specificity. Collectively, these data provide mechanistic insights into the AME in clinical LT, including a substantial role for immune exhaustion in TCMR with identification of novel targets for more focused immunotherapy in allograft rejection. Our study also offers a conceptual framework for applying spatial proteomics to study immunological diseases in archival clinical specimens.

8.
Virchows Arch ; 482(5): 801-812, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36757500

RESUMO

High-multiplex tissue imaging (HMTI) approaches comprise several novel immunohistological methods that enable in-depth, spatial single-cell analysis. Over recent years, studies in tumor biology, infectious diseases, and autoimmune conditions have demonstrated the information gain accessible when mapping complex tissues with HMTI. Tumor biology has been a focus of innovative multiparametric approaches, as the tumor microenvironment (TME) contains great informative value for accurate diagnosis and targeted therapeutic approaches: unraveling the cellular composition and structural organization of the TME using sophisticated computational tools for spatial analysis has produced histopathologic biomarkers for outcomes in breast cancer, predictors of positive immunotherapy response in melanoma, and histological subgroups of colorectal carcinoma. Integration of HMTI technologies into existing clinical workflows such as molecular tumor boards will contribute to improve patient outcomes through personalized treatments tailored to the specific heterogeneous pathological fingerprint of cancer, autoimmunity, or infection. Here, we review the advantages and limitations of existing HMTI technologies and outline how spatial single-cell data can improve our understanding of pathological disease mechanisms and determinants of treatment success. We provide an overview of the analytic processing and interpretation and discuss how HMTI can improve future routine clinical diagnostic and therapeutic processes.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Melanoma , Humanos , Feminino , Microambiente Tumoral
9.
Cytometry A ; 103(5): 392-404, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36507780

RESUMO

Technologies for single-cell profiling of the immune system have enabled researchers to extract rich interconnected networks of cellular abundance, phenotypical and functional cellular parameters. These studies can power machine learning approaches to understand the role of the immune system in various diseases. However, the performance of these approaches and the generalizability of the findings have been hindered by limited cohort sizes in translational studies, partially due to logistical demands and costs associated with longitudinal data collection in sufficiently large patient cohorts. An evolving challenge is the requirement for ever-increasing cohort sizes as the dimensionality of datasets grows. We propose a deep learning model derived from a novel pipeline of optimal temporal cell matching and overcomplete autoencoders that uses data from a small subset of patients to learn to forecast an entire patient's immune response in a high dimensional space from one timepoint to another. In our analysis of 1.08 million cells from patients pre- and post-surgical intervention, we demonstrate that the generated patient-specific data are qualitatively and quantitatively similar to real patient data by demonstrating fidelity, diversity, and usefulness.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Proteômica
10.
Ann Surg ; 277(3): e503-e512, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129529

RESUMO

OBJECTIVE: The longitudinal assessment of physical function with high temporal resolution at a scalable and objective level in patients recovering from surgery is highly desirable to understand the biological and clinical factors that drive the clinical outcome. However, physical recovery from surgery itself remains poorly defined and the utility of wearable technologies to study recovery after surgery has not been established. BACKGROUND: Prolonged postoperative recovery is often associated with long-lasting impairment of physical, mental, and social functions. Although phenotypical and clinical patient characteristics account for some variation of individual recovery trajectories, biological differences likely play a major role. Specifically, patient-specific immune states have been linked to prolonged physical impairment after surgery. However, current methods of quantifying physical recovery lack patient specificity and objectivity. METHODS: Here, a combined high-fidelity accelerometry and state-of-the-art deep immune profiling approach was studied in patients undergoing major joint replacement surgery. The aim was to determine whether objective physical parameters derived from accelerometry data can accurately track patient-specific physical recovery profiles (suggestive of a 'clock of postoperative recovery'), compare the performance of derived parameters with benchmark metrics including step count, and link individual recovery profiles with patients' preoperative immune state. RESULTS: The results of our models indicate that patient-specific temporal patterns of physical function can be derived with a precision superior to benchmark metrics. Notably, 6 distinct domains of physical function and sleep are identified to represent the objective temporal patterns: ''activity capacity'' and ''moderate and overall activity (declined immediately after surgery); ''sleep disruption and sedentary activity (increased after surgery); ''overall sleep'', ''sleep onset'', and ''light activity'' (no clear changes were observed after surgery). These patterns can be linked to individual patients preopera-tive immune state using cross-validated canonical-correlation analysis. Importantly, the pSTAT3 signal activity in monocytic myeloid-derived suppressor cells predicted a slower recovery. CONCLUSIONS: Accelerometry-based recovery trajectories are scalable and objective outcomes to study patient-specific factors that drive physical recovery.


Assuntos
Benchmarking , Exercício Físico , Humanos , Monócitos , Exame Físico , Período Pós-Operatório
11.
J Orthop Translat ; 36: 64-74, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35979174

RESUMO

Background: A critical size bone defect is a clinical scenario in which bone is lost or excised due to trauma, infection, tumor, or other causes, and cannot completely heal spontaneously. The most common treatment for this condition is autologous bone grafting to the defect site. However, autologous bone graft is often insufficient in quantity or quality for transplantation to these large defects. Recently, tissue engineering methods using mesenchymal stem cells (MSCs) have been proposed as an alternative treatment. However, the underlying biological principles and optimal techniques for tissue regeneration of bone using stem cell therapy have not been completely elucidated. Methods: In this study, we compare the early cellular dynamics of healing between bone graft transplantation and MSC therapy in a murine chronic femoral critical-size bone defect. We employ high-dimensional mass cytometry to provide a comprehensive view of the differences in cell composition, stem cell functionality, and immunomodulatory activity between these two treatment methods one week after transplantation. Results: We reveal distinct cell compositions among tissues from bone defect sites compared with original bone graft, show active recruitment of MSCs to the bone defect sites, and demonstrate the phenotypic diversity of macrophages and T cells in each group that may affect the clinical outcome. Conclusion: Our results provide critical data and future directions on the use of MSCs for treating critical size defects to regenerate bone.Translational Potential of this article: This study showed systematic comparisons of the cellular and immunomodulatory profiles among different interventions to improve the healing of the critical-size bone defect. The results provided potential strategies for designing robust therapeutic interventions for the unmet clinical need of treating critical-size bone defects.

12.
J Surg Res ; 273: 226-232, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101683

RESUMO

INTRODUCTION: Preoperative optimization programs have demonstrated positive effects on perioperative physical function and surgical outcomes. In nonsurgical populations, physical activity and healthy diet may reduce pain and pain medication requirement, but this has not been studied in surgical patients. Our aim was to determine whether a preoperative diet and exercise intervention affects postoperative pain and pain medication use. METHODS: Patients undergoing abdominal colorectal surgery were invited to participate in a web-based patient engagement program. Those enrolling in the first and third time periods received information on the standard perioperative pathway (enhanced recovery after surgery [ERAS]). Those enrolling in the second time period also received reminders on nutrition and exercise (PREHAB + ERAS). The primary outcome was postoperative inpatient opioid use. The secondary outcomes were inpatient postoperative pain scores and nonopioid pain medication use. RESULTS: The ERAS and PREHAB + ERAS groups were similar in demographic and operative characteristics. Subgroup analysis of patients who activated their accounts demonstrated that the two groups had similar average maximum daily pain scores, but the PREHAB + ERAS group (n = 158) used 15.9 fewer oral morphine equivalents per postoperative inpatient day than the ERAS group (n = 92), representing a 30% decrease (53 mg versus 37.1 mg, P = 0.04). The two groups used comparable amounts of acetaminophen, gabapentin, and ketorolac. Generalized linear models demonstrated that PREHAB + ERAS, minimally invasive surgery, and older age were associated with lower inpatient opioid use. CONCLUSIONS: Access to a web-based preoperative diet and exercise program may reduce inpatient opioid use after major elective colorectal surgery. Further studies are necessary to determine whether the degree of adherence to nutrition and physical activity recommendations has a dose-dependent effect on opioid use.


Assuntos
Cirurgia Colorretal , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides/uso terapêutico , Estudos de Coortes , Cirurgia Colorretal/efeitos adversos , Humanos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Exercício Pré-Operatório , Estudos Retrospectivos
13.
Ann Surg ; 275(3): 582-590, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954754

RESUMO

OBJECTIVE: The aim of this study was to determine whether single-cell and plasma proteomic elements of the host's immune response to surgery accurately identify patients who develop a surgical site complication (SSC) after major abdominal surgery. SUMMARY BACKGROUND DATA: SSCs may occur in up to 25% of patients undergoing bowel resection, resulting in significant morbidity and economic burden. However, the accurate prediction of SSCs remains clinically challenging. Leveraging high-content proteomic technologies to comprehensively profile patients' immune response to surgery is a promising approach to identify predictive biological factors of SSCs. METHODS: Forty-one patients undergoing non-cancer bowel resection were prospectively enrolled. Blood samples collected before surgery and on postoperative day one (POD1) were analyzed using a combination of single-cell mass cytometry and plasma proteomics. The primary outcome was the occurrence of an SSC, including surgical site infection, anastomotic leak, or wound dehiscence within 30 days of surgery. RESULTS: A multiomic model integrating the single-cell and plasma proteomic data collected on POD1 accurately differentiated patients with (n = 11) and without (n = 30) an SSC [area under the curve (AUC) = 0.86]. Model features included coregulated proinflammatory (eg, IL-6- and MyD88- signaling responses in myeloid cells) and immunosuppressive (eg, JAK/STAT signaling responses in M-MDSCs and Tregs) events preceding an SSC. Importantly, analysis of the immunological data obtained before surgery also yielded a model accurately predicting SSCs (AUC = 0.82). CONCLUSIONS: The multiomic analysis of patients' immune response after surgery and immune state before surgery revealed systemic immune signatures preceding the development of SSCs. Our results suggest that integrating immunological data in perioperative risk assessment paradigms is a plausible strategy to guide individualized clinical care.


Assuntos
Fístula Anastomótica/epidemiologia , Proteínas Sanguíneas/análise , Proteínas Alimentares/sangue , Deiscência da Ferida Operatória/epidemiologia , Infecção da Ferida Cirúrgica/epidemiologia , Adulto , Estudos de Coortes , Procedimentos Cirúrgicos do Sistema Digestório , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Prognóstico , Estudos Prospectivos , Proteoma , Análise de Célula Única
14.
Cell Host Microbe ; 29(12): 1828-1837.e5, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34784508

RESUMO

Developing new influenza vaccines with improved performance and easier administration routes hinges on defining correlates of protection. Vaccine-elicited cellular correlates of protection for influenza in humans have not yet been demonstrated. A phase-2 double-blind randomized placebo and active (inactivated influenza vaccine) controlled study provides evidence that a human-adenovirus-5-based oral influenza vaccine tablet (VXA-A1.1) can protect from H1N1 virus challenge in humans. Mass cytometry characterization of vaccine-elicited cellular immune responses identified shared and vaccine-type-specific responses across B and T cells. For VXA-A1.1, the abundance of hemagglutinin-specific plasmablasts and plasmablasts positive for integrin α4ß7, phosphorylated STAT5, or lacking expression of CD62L at day 8 were significantly correlated with protection from developing viral shedding following virus challenge at day 90 and contributed to an effective machine learning model of protection. These findings reveal the characteristics of vaccine-elicited cellular correlates of protection for an oral influenza vaccine.


Assuntos
Imunidade , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Vacinação , Método Duplo-Cego , Humanos , Imunidade Celular , Imunização , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana/prevenção & controle , Selectina L/metabolismo , Fator de Transcrição STAT5/metabolismo , Linfócitos T , Vacinas de Produtos Inativados/imunologia , Eliminação de Partículas Virais
15.
Curr Opin Crit Care ; 27(6): 717-725, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545029

RESUMO

PURPOSE OF REVIEW: Postoperative complications including infections, cognitive impairment, and protracted recovery occur in one-third of the 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on our healthcare system. However, the accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain as major clinical challenges. RECENT FINDINGS: Although multifactorial in origin, the dysregulation of immunological mechanisms that occur in response to surgical trauma is a key determinant of postoperative complications. Prior research, primarily focusing on inflammatory plasma markers, has provided important clues regarding their pathogenesis. However, the recent advent of high-content, single-cell transcriptomic, and proteomic technologies has considerably improved our ability to characterize the immune response to surgery, thereby providing new means to understand the immunological basis of postoperative complications and to identify prognostic biological signatures. SUMMARY: The comprehensive and single-cell characterization of the human immune response to surgery has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers, ultimately providing patients and surgeons with actionable information to improve surgical outcomes. Although recent studies have generated a wealth of knowledge, laying the foundation for a single-cell atlas of the human immune response to surgery, larger-scale multiomic studies are required to derive robust, scalable, and sufficiently powerful models to accurately predict the risk of postoperative complications in individual patients.


Assuntos
Complicações Pós-Operatórias , Proteômica , Biomarcadores , Humanos , Imunidade , Prognóstico
16.
Ann Surg ; 273(2): 289-298, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188202

RESUMO

OBJECTIVES: To identify perioperative practice patterns that predictably impact postoperative pain. BACKGROUND: Despite significant advances in perioperative medicine, a significant portion of patients still experience severe pain after major surgery. Postoperative pain is associated with serious adverse outcomes that are costly to patients and society. METHODS: The presented analysis took advantage of a unique observational data set providing unprecedented detailed pharmacological information. The data were collected by PAIN OUT, a multinational registry project established by the European Commission to improve postoperative pain outcomes. A multivariate approach was used to derive and validate a model predictive of pain on postoperative day 1 (POD1) in 1008 patients undergoing back surgery. RESULTS: The predictive and validated model was highly significant (P = 8.9E-15) and identified modifiable practice patterns. Importantly, the number of nonopioid analgesic drug classes administered during surgery predicted decreased pain on POD1. At least 2 different nonopioid analgesic drug classes (cyclooxygenase inhibitors, acetaminophen, nefopam, or metamizol) were required to provide meaningful pain relief (>30%). However, only a quarter of patients received at least 2 nonanalgesic drug classes during surgery. In addition, the use of very short-acting opioids predicted increased pain on POD1, suggesting room for improvement in the perioperative management of these patients. Although the model was highly significant, it only accounted for a relatively small fraction of the observed variance. CONCLUSION: The presented analysis offers detailed insight into current practice patterns and reveals modifications that can be implemented in today's clinical practice. Our results also suggest that parameters other than those currently studied are relevant for postoperative pain including biological and psychological variables.


Assuntos
Dor Aguda/epidemiologia , Procedimentos Ortopédicos/efeitos adversos , Dor Pós-Operatória/epidemiologia , Padrões de Prática Médica/estatística & dados numéricos , Coluna Vertebral/cirurgia , Dor Aguda/diagnóstico , Dor Aguda/tratamento farmacológico , Idoso , Analgésicos/uso terapêutico , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Procedimentos Ortopédicos/estatística & dados numéricos , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/tratamento farmacológico , Valor Preditivo dos Testes , Fatores de Risco
17.
Nat Commun ; 11(1): 3737, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719355

RESUMO

Glucocorticoids (GC) are a controversial yet commonly used intervention in the clinical management of acute inflammatory conditions, including sepsis or traumatic injury. In the context of major trauma such as surgery, concerns have been raised regarding adverse effects from GC, thereby necessitating a better understanding of how GCs modulate the immune response. Here we report the results of a randomized controlled trial (NCT02542592) in which we employ a high-dimensional mass cytometry approach to characterize innate and adaptive cell signaling dynamics after a major surgery (primary outcome) in patients treated with placebo or methylprednisolone (MP). A robust, unsupervised bootstrap clustering of immune cell subsets coupled with random forest analysis shows profound (AUC = 0.92, p-value = 3.16E-8) MP-induced alterations of immune cell signaling trajectories, particularly in the adaptive compartments. By contrast, key innate signaling responses previously associated with pain and functional recovery after surgery, including STAT3 and CREB phosphorylation, are not affected by MP. These results imply cell-specific and pathway-specific effects of GCs, and also prompt future studies to examine GCs' effects on clinical outcomes likely dependent on functional adaptive immune responses.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Artroplastia de Quadril/efeitos adversos , Glucocorticoides/farmacologia , Ferimentos e Lesões/etiologia , Ferimentos e Lesões/imunologia , Doença Aguda , Idoso , Estudos de Casos e Controles , Método Duplo-Cego , Fadiga/tratamento farmacológico , Feminino , Humanos , Masculino , Metilprednisolona/farmacologia , Metilprednisolona/uso terapêutico , Inibidor de NF-kappaB alfa/metabolismo , Dor/tratamento farmacológico , Fenótipo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Resultado do Tratamento
18.
Am J Obstet Gynecol ; 218(3): 347.e1-347.e14, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29277631

RESUMO

BACKGROUND: Early detection of maladaptive processes underlying pregnancy-related pathologies is desirable because it will enable targeted interventions ahead of clinical manifestations. The quantitative analysis of plasma proteins features prominently among molecular approaches used to detect deviations from normal pregnancy. However, derivation of proteomic signatures sufficiently predictive of pregnancy-related outcomes has been challenging. An important obstacle hindering such efforts were limitations in assay technology, which prevented the broad examination of the plasma proteome. OBJECTIVE: The recent availability of a highly multiplexed platform affording the simultaneous measurement of 1310 plasma proteins opens the door for a more explorative approach. The major aim of this study was to examine whether analysis of plasma collected during gestation of term pregnancy would allow identifying a set of proteins that tightly track gestational age. Establishing precisely timed plasma proteomic changes during term pregnancy is a critical step in identifying deviations from regular patterns caused by fetal and maternal maladaptations. A second aim was to gain insight into functional attributes of identified proteins and link such attributes to relevant immunological changes. STUDY DESIGN: Pregnant women participated in this longitudinal study. In 2 subsequent sets of 21 (training cohort) and 10 (validation cohort) women, specific blood specimens were collected during the first (7-14 weeks), second (15-20 weeks), and third (24-32 weeks) trimesters and 6 weeks postpartum for analysis with a highly multiplexed aptamer-based platform. An elastic net algorithm was applied to infer a proteomic model predicting gestational age. A bootstrapping procedure and piecewise regression analysis was used to extract the minimum number of proteins required for predicting gestational age without compromising predictive power. Gene ontology analysis was applied to infer enrichment of molecular functions among proteins included in the proteomic model. Changes in abundance of proteins with such functions were linked to immune features predictive of gestational age at the time of sampling in pregnancies delivering at term. RESULTS: An independently validated model consisting of 74 proteins strongly predicted gestational age (P = 3.8 × 10-14, R = 0.97). The model could be reduced to 8 proteins without losing its predictive power (P = 1.7 × 10-3, R = 0.91). The 3 top ranked proteins were glypican 3, chorionic somatomammotropin hormone, and granulins. Proteins activating the Janus kinase and signal transducer and activator of transcription pathway were enriched in the proteomic model, chorionic somatomammotropin hormone being the top-ranked protein. Abundance of chorionic somatomammotropin hormone strongly correlated with signal transducer and activator of transcription-5 signaling activity in CD4 T cells, the endogenous cell-signaling event most predictive of gestational age. CONCLUSION: Results indicate that precisely timed changes in the plasma proteome during term pregnancy mirror a proteomic clock. Importantly, the combined use of several plasma proteins was required for accurate prediction. The exciting promise of such a clock is that deviations from its regular chronological profile may assist in the early diagnoses of pregnancy-related pathologies, and point to underlying pathophysiology. Functional analysis of the proteomic model generated the novel hypothesis that chrionic somatomammotropin hormone may critically regulate T-cell function during pregnancy.


Assuntos
Idade Gestacional , Período Pós-Parto/sangue , Trimestres da Gravidez/sangue , Gravidez/sangue , Proteoma/metabolismo , Adulto , Algoritmos , Biomarcadores/sangue , Linfócitos T CD4-Positivos/metabolismo , Feminino , Ontologia Genética , Glipicanas/sangue , Granulinas/sangue , Humanos , Janus Quinases/sangue , Modelos Teóricos , Lactogênio Placentário/sangue , Valor Preditivo dos Testes , Fatores de Transcrição STAT/sangue , Fator de Transcrição STAT5/sangue , Transdução de Sinais
19.
J Immunol ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794234

RESUMO

Application of high-content immune profiling technologies has enormous potential to advance medicine. Whether these technologies reveal pertinent biology when implemented in interventional clinical trials is an important question. The beneficial effects of preoperative arginine-enriched dietary supplements (AES) are highly context specific, as they reduce infection rates in elective surgery, but possibly increase morbidity in critically ill patients. This study combined single-cell mass cytometry with the multiplex analysis of relevant plasma cytokines to comprehensively profile the immune-modifying effects of this much-debated intervention in patients undergoing surgery. An elastic net algorithm applied to the high-dimensional mass cytometry dataset identified a cross-validated model consisting of 20 interrelated immune features that separated patients assigned to AES from controls. The model revealed wide-ranging effects of AES on innate and adaptive immune compartments. Notably, AES increased STAT1 and STAT3 signaling responses in lymphoid cell subsets after surgery, consistent with enhanced adaptive mechanisms that may protect against postsurgical infection. Unexpectedly, AES also increased ERK and P38 MAPK signaling responses in monocytic myeloid-derived suppressor cells, which was paired with their pronounced expansion. These results provide novel mechanistic arguments as to why AES may exert context-specific beneficial or adverse effects in patients with critical illness. This study lays out an analytical framework to distill high-dimensional datasets gathered in an interventional clinical trial into a fairly simple model that converges with known biology and provides insight into novel and clinically relevant cellular mechanisms.

20.
Implant Dent ; 26(4): 500-509, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28731896

RESUMO

INTRODUCTION: Patient anatomy, practitioner experience, and surgical approach are all factors that influence implant accuracy. However, the relative importance of each factor is poorly understood. The present study aimed to identify which factors most critically determine implant accuracy to aid the practitioner in case selection for guided versus freehand surgery. METHODS: One practitioner's ideal implant angulation and position was compared with his achieved position radiographically for 450 implants placed using a conventional freehand method. The relative contribution of 11 demographic, anatomical, and surgical factors to the accuracy of implant placement was systematically quantified. DISCUSSION: The most important predictors of angulation and position accuracy were the number of adjacent implants placed and the tooth-borne status of the site. Immediate placement also significantly increased position accuracy, whereas cases with narrow sites were significantly more accurate in angulation. Accuracy also improved with the practitioner's experience. CONCLUSION: These results suggest tooth-borne, single-implant cases performed later in the practitioner's experience are most appropriate for freehand placement, whereas guided surgery should be considered to improve accuracy for multiple-implant cases in edentulous or partially edentulous sites.


Assuntos
Competência Clínica , Tomografia Computadorizada de Feixe Cônico , Implantação Dentária Endóssea/métodos , Implantes Dentários , Arcada Parcialmente Edêntula/reabilitação , Avaliação de Processos e Resultados em Cuidados de Saúde , Cirurgia Assistida por Computador/métodos , Humanos , Imageamento Tridimensional , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA