Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
2.
Cancer Res ; 80(12): 2651-2662, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32291318

RESUMO

Ceramide-induced endothelial cell apoptosis boosts intestinal stem cell radiosensitivity. However, the molecular connection between these two cellular compartments has not been clearly elucidated. Here we report that ceramide and its related enzyme acid sphingomyelinase (ASM) are secreted by irradiated endothelial cells and act as bystander factors to enhance the radiotoxicity of intestinal epithelium. Ceramide and the two isoforms of ASM were acutely secreted in the blood serum of wild-type mice after 15 Gy radiation dose, inducing a gastrointestinal syndrome. Interestingly, serum ceramide was not enhanced in irradiated ASMKO mice, which are unable to develop intestinal failure injury. Because ASM/ceramide were secreted by primary endothelial cells, their contribution was studied in intestinal epithelium dysfunction using coculture of primary endothelial cells and intestinal T84 cells. Adding exogenous ASM or ceramide enhanced epithelial cell growth arrest and death. Conversely, blocking their secretion by endothelial cells using genetic, pharmacologic, or immunologic approaches abolished intestinal T84 cell radiosensitivity. Use of enteroid models revealed ASM and ceramide-mediated deleterious mode-of-action: when ceramide reduced the number of intestinal crypt-forming enteroids without affecting their structure, ASM induced a significant decrease of enteroid growth without affecting their number. Identification of specific and different roles for ceramide and ASM secreted by irradiated endothelial cells opens new perspectives in the understanding of intestinal epithelial dysfunction after radiation and defines a new class of potential therapeutic radiomitigators. SIGNIFICANCE: This study identifies secreted ASM and ceramide as paracrine factors enhancing intestinal epithelial dysfunction, revealing a previously unknown class of mediators of radiosensitivity.


Assuntos
Ceramidas/metabolismo , Células Endoteliais/metabolismo , Mucosa Intestinal/patologia , Lesões por Radiação/patologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Efeito Espectador/efeitos da radiação , Células Cultivadas , Ceramidas/sangue , Técnicas de Cocultura , Desipramina/farmacologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Masculino , Camundongos , Camundongos Knockout , Comunicação Parácrina/genética , Comunicação Parácrina/efeitos da radiação , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Lesões por Radiação/sangue , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética
3.
Free Radic Biol Med ; 108: 750-759, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28431961

RESUMO

Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. We now propose to better characterize the long-term radiation response of endothelial cells by studying the molecular pathways associated with senescence and its link with acute apoptosis. First, senescence was validated in irradiated quiescent microvascular HMVEC-L in a dose- and time-dependent manner by SA ß-galactosidase staining, p16Ink4a and p21Waf1 expression, pro-inflammatory IL-8 secretion and DNA damage response activation. This premature aging was induced independently of Sphingosine 1-Phosphate treatment, supporting its non-connection with acute IR-induced apoptosis. Then, senescence under these conditions showed persistent activation of p53 pathway and mitochondrial dysfunctions, characterized by O2·- generation, inhibition of respiratory complex II activity and over-expression of SOD2 and GPX1 detoxification enzymes. Senescence was significantly inhibited by treatment with pifithrin-α, a p53 inhibitor, or by MnTBAP, a superoxide dismutase mimetic, validating those molecular actors in IR-induced endothelial cell aging. However, MnTBAP, but not pifithrin-α, was able to limit superoxide generation and to rescue the respiratory complex II activity. Furthermore, MnTBAP was not modulating p53 up-regulation, suggesting that IR-induced senescence in quiescent endothelial cells is provided by at least 2 different pathways dependent of the mitochondrial oxidative stress response and the p53 activation. Further characterization of the actors involved in the respiratory complex II dysfunction will open new pharmacological strategies to modulate late radiation toxicity.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Células Endoteliais/fisiologia , Microvasos/patologia , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Apoptose , Linhagem Celular , Senescência Celular , Células Endoteliais/efeitos da radiação , Humanos , Interleucina-8/metabolismo , Lisofosfolipídeos/metabolismo , Estresse Oxidativo , Radiação Ionizante , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Radiother Oncol ; 119(2): 229-35, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27113798

RESUMO

BACKGROUND AND PURPOSES: Early biomarkers of tumour response are needed to discriminate between responders and non-responders to radiotherapy. We evaluated the ability of ceramide, a bioactive sphingolipid, to predict tumour sensitivity in patients treated by hypofractionated stereotactic body radiation therapy (SBRT) combined with irinotecan chemotherapy. MATERIALS AND METHODS: Plasma levels of total ceramide and of its subspecies were measured before and during treatment in 35 patients with liver and lung oligometastases of colorectal cancer included in a phase II trial. Cer levels were quantified by LC-ESI-MS/MS and compared to tumour volume response evaluated one year later by CT-scan. RESULTS: Pretreatment plasma ceramide levels were not indicative of tumour response. Nevertheless, the levels of total ceramide and of its 4 main subspecies were significantly higher at days 3 and 10 of treatment in objective responders than in non-responders. According to Kaplan-Meier curves, almost complete tumour control was achieved at 1year in patients with increased total ceramide levels whereas 50% of patients with decreased levels experienced an increase in tumour volume. CONCLUSIONS: Total plasma ceramide is a promising biomarker of tumour response to SBRT combined with irinotecan that should enable to segregate patients with high risk of tumour escape.


Assuntos
Camptotecina/análogos & derivados , Ceramidas/sangue , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiossensibilizantes/uso terapêutico , Radiocirurgia/métodos , Adulto , Idoso , Biomarcadores/sangue , Camptotecina/uso terapêutico , Terapia Combinada , Feminino , Humanos , Irinotecano , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Radiocirurgia/efeitos adversos , Resultado do Tratamento
6.
Front Med (Lausanne) ; 2: 88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734610

RESUMO

PURPOSE: Ovarian peritoneal carcinomatosis is a pathology for which effective cures are currently lacking. New research protocols seek to eradicate residual micrometastases following cytoreductive surgery by using hyperthermic intraperitoneal chemotherapy (HIPEC) or radioimmunotherapy (RIT). This study aims to first develop alpha-RIT using an anti-CD138 mAb radiolabeled with an alpha-emitter, bismuth-213 ((213)Bi-B-B4) and HIPEC in a nude mouse model and second to compare and combine these techniques. MATERIAL AND METHODS: A murine model of postoperative ovarian peritoneal carcinomatosis was established. A pilot group of six mice received an intraperitoneal injection of luciferase-tagged SHIN-3 cells and bioluminescence was measured every day. Cytoreductive surgery was performed at day 14 (n = 4) and 29 (n = 2). Because the residual bioluminescence signal measured after surgery was equivalent to that obtained 3 days after the graft, HIPEC or alpha-RIT treatments were applied 3 days after the graft. Ten mice were treated by HIPEC with cisplatine (37.5 mg/mL), 11 with 7.4 MBq of (213)Bi-B-B4, seven with 11.1 MBq of (213)Bi-B-B4, and 10 mice were treated with the combined therapy (HIPEC + 7.4 MBq of (213)Bi-B-B4). Eleven mice received no treatment. Bioluminescence imaging and survival were assessed. RESULTS: Alpha-RIT 7.4 MBq and 11.1 MBq significantly improved survival (p = 0.0303 and p = 0.0070, respectively), whereas HIPEC and HIPEC + alpha-RIT treatments did not significantly ameliorate survival as compared to the control group. CONCLUSION: Survival was significantly increased by alpha-RIT treatment in mice with peritoneal carcinomatosis of ovarian origin; however, HIPEC alone or in combination with alpha-RIT had no significant effect.

7.
Oncoimmunology ; 2(4): e23700, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23734323

RESUMO

Current antiangiogenic immunotherapeutic strategies mainly focus on the blockade of circulating cytokines or receptors that are overexpressed by endothelial cells. We proposed globotriaosylceramide (Gb3) as a viable alternative target for antiangiogenic therapies. In this setting, we developed an anti-Gb3 antibody and validated its therapeutic efficacy in metastatic tumor models.

8.
PLoS One ; 7(11): e45423, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189121

RESUMO

Inhibiting the growth of tumor vasculature represents one of the relevant strategies against tumor progression. Between all the different pro-angiogenic molecular targets, plasma membrane glycosphingolipids have been under-investigated. In this present study, we explore the anti-angiogenic therapeutic advantage of a tumor immunotherapy targeting the globotriaosylceramide Gb3. In this purpose, a monoclonal antibody against Gb3, named 3E2 was developed and characterized. We first demonstrate that Gb3 is over-expressed in proliferative endothelial cells relative to quiescent cells. Then, we demonstrate that 3E2 inhibits endothelial cell proliferation in vitro by slowing endothelial cell proliferation and by increasing mitosis duration. Antibody 3E2 is further effective in inhibiting ex vivo angiogenesis in aorta ring assays. Moreover, 3E2 treatment inhibits NXS2 neuroblastoma development and liver metastases spreading in A/J mice. Immunohistology examination of the NXS2 metastases shows that only endothelial cells, but not cancer cells express Gb3. Finally, 3E2 treatment diminishes tumor vessels density, proving a specific therapeutic action of our monoclonal antibody to tumor vasculature. Our study demonstrates that Gb3 is a viable alternative target for immunotherapy and angiogenesis inhibition.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Antineoplásicos/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/imunologia , Neovascularização Patológica/imunologia , Inibidores da Angiogênese/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Antígenos Glicosídicos Associados a Tumores/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/imunologia , Membrana Celular/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Neuroblastoma/patologia , Carga Tumoral/efeitos dos fármacos
9.
Biochem Biophys Res Commun ; 414(4): 750-5, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22001926

RESUMO

Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.


Assuntos
Movimento Celular/efeitos da radiação , Endotélio Vascular/efeitos da radiação , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Amidas/farmacologia , Apoptose/efeitos da radiação , Adesão Celular/efeitos da radiação , Linhagem Celular , Citoesqueleto/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiologia , Fibronectinas/metabolismo , Humanos , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética
10.
Cancer Res ; 70(23): 9905-15, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21118968

RESUMO

A previous in vitro study showed that sphingosine-1-phosphate (S1P), a ceramide antagonist, preserved endothelial cells in culture from radiation-induced apoptosis. We proposed to validate the role of S1P in tissue radioprotection by inhibiting acute gastrointestinal (GI) syndrome induced by endothelial cell apoptosis after high dose of radiation. Retro-orbital S1P was injected in mice exposed to 15 Gy, a dose-inducing GI syndrome within 10 days. Overall survival and apoptosis on intestines sections were studied. Intestinal cell type targeted by S1P and early molecular survival pathways were researched using irradiated in vitro cell models and in vivo mouse models. We showed that retro-orbital S1P injection before irradiation prevented GI syndrome by inhibiting endothelium collapse. We defined endothelium as a specific therapeutic target because only these cells and not intestinal epithelial cells, or B and T lymphocytes, were protected. Pharmacologic approaches using AKT inhibitor and pertussis toxin established that S1P affords endothelial cell protection in vitro and in vivo through a mechanism involving AKT and 7-pass transmembrane receptors coupled to Gi proteins. Our results provide strong pharmacologic and mechanistic proofs that S1P protects endothelial cells against acute radiation enteropathy.


Assuntos
Apoptose/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Apoptose/efeitos da radiação , Western Blotting , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Linhagem Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Trato Gastrointestinal/efeitos da radiação , Humanos , Imuno-Histoquímica , Intestino Delgado/citologia , Intestino Delgado/efeitos da radiação , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/patologia , Tecido Linfoide/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Lesões Experimentais por Radiação/tratamento farmacológico , Esfingosina/farmacologia , Síndrome
11.
Med Sci (Paris) ; 26(8-9): 740-6, 2010.
Artigo em Francês | MEDLINE | ID: mdl-20819712

RESUMO

The continuous optimization of cancer treatment with radiotherapy raises the problem of long-term issue of patients treated and cured by ionizing radiation, with the possible occurrence of second cancers or nonmalignant complications. Among these, cardiovascular diseases are prevalent and may affect up to 40 % of patients depending on the location of the irradiation. Recent epidemiological studies show that this problem is underestimated and with no real prospective studies. The management of these patients with vascular risk, or with very high vascular risk for those with pre-existing traditional cardiovascular risk factors, remains to be determined. The pathophysiological mechanisms of radiation-induced atherosclerosis have not yet been clarified. Many efforts are still needed to identify patients at risk and to find or to propose an appropriate treatment. Prolonged vascular follow-up of patients after their radiotherapy should now be integrated into patterns of care, especially because the setting up of sophisticated technical platforms of radiotherapy do not necessarily solve the issue of cardiovascular risk after treatment. double dagger.


Assuntos
Aterosclerose/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico por imagem , Neoplasias/radioterapia , Radioterapia/efeitos adversos , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/prevenção & controle , Seguimentos , Humanos , Cintilografia , Radioterapia/estatística & dados numéricos , Medição de Risco
12.
J Invest Dermatol ; 129(5): 1280-91, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19212344

RESUMO

About half of people with cancer are treated with radiation therapy; however, normal tissue toxicity still remains a dose-limiting factor for this treatment. The skin response to ionizing radiation may involve multiple inflammatory outbreaks. The endothelium is known to play a critical role in radiation-induced vascular injury. Furthermore, endothelial dysfunction reflects a decreased availability of nitric oxide. Statins have been reported to preserve endothelial function through their antioxidant and anti-inflammatory activities. In this study, wild type and endothelial nitric oxide synthase (eNOS)(-/-) mice were subjected to dorsal skin irradiation and treated with pravastatin for 28 days. We demonstrated that pravastatin has a therapeutic effect on skin lesions and abolishes radiation-induced vascular functional activation by decreasing interactions between leukocytes and endothelium. Pravastatin limits the radiation-induced increase of blood CCL2 and CXCL1 production expression of inflammatory adhesion molecules such as E-selectin and intercellular adhesion molecule-1, and inflammatory cell migration in tissues. Pravastatin limits the in vivo and in vitro radiation-induced downregulation of eNOS. Moreover, pravastatin has no effect in eNOS(-/-) mice, demonstrating that eNOS plays a key role in the beneficial effect of pravastatin in radiation-induced skin lesions. In conclusion, pravastatin may be a good therapeutic approach to prevent or reduce radiation-induced skin damage.


Assuntos
Vasos Sanguíneos/fisiopatologia , Endotélio Vascular/fisiopatologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pravastatina/uso terapêutico , Radiodermite/prevenção & controle , Radioterapia/efeitos adversos , Pele/irrigação sanguínea , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/efeitos da radiação , Comunicação Celular/efeitos da radiação , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Selectina E/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/efeitos da radiação , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Pravastatina/farmacologia , Radiodermite/metabolismo , Radiodermite/patologia
13.
Radiat Res ; 167(2): 185-93, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17390726

RESUMO

The response of endothelial cells (EC) to high radiation doses leads to damage of normal tissue or tumor. The precise mechanisms of the endothelial-tissue linkage are still largely unknown. We investigated the possible involvement of a bystander effect, secondary to endothelial damage, in tissue response to radiation. Proliferating human intestinal epithelial T84 cells were grown in a non-contact co-culture with confluent primary human microvascular EC (HMVEC-L). The bystander response in unirradiated T84 cells co-cultured with irradiated EC was studied by evaluating cell growth, cell death and epithelial morphology. Twenty-four hours after exposure of EC to 15 Gy, unirradiated T84 cells showed a decreased cell number (29%) and percentage in mitosis (66%) as well as increased apoptosis (1.5-fold) and cell surface area (1.5-fold), highlighting the involvement of bystander effects on T84 cells after irradiation of EC. Furthermore, the responses of T84 cells were amplified when EC and T84 cells were irradiated together, indicating that the bystander response in T84 cells adds further to direct radiation damage. As opposed to direct irradiation, the T84 cell bystander response did not involve the cell cycle-related protein p21(Waf1) (CDKN1A) and pro-apoptosis protein BAX. The bystander effect was specific to EC since the irradiation of human colon fibroblasts did not induce bystander responses in unirradiated T84 cells. These results strengthen previous in vivo evidence of the role of EC in tissue damage by radiation. In addition, this study provides a suitable and useful model to identify soluble factors involved in bystander effects secondary to endothelial damage. Modulating such factors may have important clinical implications.


Assuntos
Endotélio Vascular/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Mucosa Intestinal/metabolismo , Intestinos/efeitos da radiação , Apoptose , Efeito Espectador , Ciclo Celular , Técnicas de Cocultura , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocinas/metabolismo , Endotélio Vascular/citologia , Humanos , Microcirculação , Mitose , RNA Mensageiro/metabolismo , Radiação , Proteína X Associada a bcl-2/metabolismo
14.
Cancer Res ; 67(4): 1803-11, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17308123

RESUMO

Because of the central role of the endothelium in tissue homeostasis, protecting the vasculature from radiation-induced death is a major concern in tissue radioprotection. Premitotic apoptosis and mitotic death are two prevalent cell death pathways induced by ionizing radiation. Endothelial cells undergo apoptosis after radiation through generation of the sphingolipid ceramide. However, if mitotic death is known as the established radiation-induced death pathway for cycling eukaryotic cells, direct involvement of mitotic death in proliferating endothelial radiosensitivity has not been clearly shown. In this study, we proved that proliferating human microvascular endothelial cells (HMEC-1) undergo two waves of death after exposure to 15 Gy radiation: an early premitotic apoptosis dependent on ceramide generation and a delayed DNA damage-induced mitotic death. The fact that sphingosine-1-phosphate (S1P), a ceramide antagonist, protects HMEC-1 only from membrane-dependent apoptosis but not from DNA damage-induced mitotic death proves the independence of the two pathways. Furthermore, adding nocodazole, a mitotic inhibitor, to S1P affected both cell death mechanisms and fully prevented radiation-induced death. If our results fit with the standard model in which S1P signaling inhibits ceramide-mediated apoptosis induced by antitumor treatments, such as radiotherapy, they exclude, for the first time, a significant role of S1P-induced molecular survival pathway against mitotic death. Discrimination between ceramide-mediated apoptosis and DNA damage-induced mitotic death may give the opportunity to define a new class of radioprotectors for normal tissues in which quiescent endothelium represents the most sensitive target, while excluding malignant tumor containing pro-proliferating angiogenic endothelial cells that are sensitive to mitotic death.


Assuntos
Apoptose/efeitos dos fármacos , Ceramidas/antagonistas & inibidores , Dano ao DNA , Células Endoteliais/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Processos de Crescimento Celular , Ceramidas/biossíntese , Desipramina/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Humanos , Mitose/efeitos dos fármacos , Mitose/fisiologia , Nocodazol/farmacologia , Esfingosina/farmacologia
15.
Radiat Res ; 163(5): 479-87, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15850408

RESUMO

Endothelial dysfunction has been implicated in the pathogenesis of atherosclerosis, fibrosis and vascular occlusion after radiation therapy. Statins have been reported to improve endothelial function; however, this beneficial effect on endothelial cells has never been investigated after irradiation. Therefore, using human microvascular endothelial cells from lung that had been irradiated with 5 or 10 Gy, we assessed the effect of pravastatin on endothelial activation by ELISA, cell-ELISA and electrophoretic mobility shift assay and increased blood-endothelial cell interactions by a flow adhesion assay. Pravastatin inhibited the overproduction of monocyte chemoattractant protein 1, IL6 and IL8 and the enhanced expression of intercellular adhesion molecule 1 but had no effect on platelet-endothelial cell adhesion molecule 1 expression. Moreover, pravastatin down-regulated the radiation-induced activation of the transcription factor activator protein 1 but not of nuclear factor-kappaB. Finally, an inhibition by pravastatin of increased adhesion of leukocytes and platelets to irradiated endothelial cells was observed. The effect of pravastatin was maintained up to 14 days after irradiation and was reversed by mevalonate. Pravastatin exerts persistent anti-inflammatory and anti-thrombotic effects on irradiated endothelial cells. Statins may be considered in therapeutic strategies for the management of patients treated with radiation therapy.


Assuntos
Células Endoteliais/efeitos da radiação , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pravastatina/farmacologia , Radioterapia/efeitos adversos , Trombose/prevenção & controle , Arteriosclerose/tratamento farmacológico , Arteriosclerose/etiologia , Células Cultivadas , Quimiocina CCL2/biossíntese , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Molécula 1 de Adesão Intercelular/análise , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Ácido Mevalônico/farmacologia , NF-kappa B/antagonistas & inibidores
16.
Radiat Res ; 163(5): 557-70, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15850418

RESUMO

We developed a model of heterogeneous irradiation in a nonhuman primate to test the feasibility of autologous hematopoietic cell therapy for the treatment of radiation accident victims. Animals were irradiated either with 8 Gy to the body with the right arm shielded to obtain 3.4 Gy irradiation or with 10 Gy total body and 4.4 Gy to the arm. Bone marrow mononuclear cells were harvested either before irradiation or after irradiation from an underexposed area of the arm and were expanded in previously defined culture conditions. We showed that hematopoietic cells harvested after irradiation were able to expand and to engraft when reinjected 7 days after irradiation. Recovery was observed in all 8-Gy-irradiated animals, and evidence for a partial recovery was observed in 10-Gy-irradiated animals. However, in 10-Gy-irradiated animals, digestive disease was observed from day 16 and resulted in the death of two animals. Immunohistological examinations showed damage to the intestine, lungs, liver and kidneys and suggested radiation damage to endothelial cells. Overall, our results provide evidence that such an in vivo model of heterogeneous irradiation may be representative of accidental radiation exposures and may help to define the efficacy of therapeutic interventions such as autologous cell therapy in radiation accident victims.


Assuntos
Células da Medula Óssea/citologia , Sistema Hematopoético/citologia , Leucócitos Mononucleares/transplante , Lesões por Radiação/terapia , Animais , Células da Medula Óssea/efeitos da radiação , Hematopoese/efeitos da radiação , Macaca fascicularis , Masculino , Doses de Radiação , Transplante Autólogo
17.
Radiat Res ; 160(6): 637-46, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14640783

RESUMO

Inflammatory reaction is a classical feature of radiation exposure, and pneumonitis is a dose-limiting complication in the handling of hematological disorders treated with total-body irradiation. In the present study, we first evaluated the inflammatory response in C57BL6/J mice exposed to lethal doses of gamma rays treated with antibiotics or not. Both interleukin 6 and KC (also known as Gro1) were increased in the plasma 10 to 18 days after radiation exposure, independent of bacterial infection, whereas fibrinogen release was linked to a bacterial infection. Furthermore, both Il6 and KC were increased in the lungs of irradiated mice. Our second objective was to characterize the endothelial cell changes in the lungs of total-body-irradiated mice. For this purpose, a quantitative RT-PCR was used to determine the expression of genes involved in inflammatory and coagulation processes. We found that the adhesion molecules P-selectin and platelet endothelial cell adhesion molecule 1 were up-regulated, whereas E-selectin remained unchanged. Tissue factor expression was up-regulated as well, and thrombomodulin gene expression was down-regulated. The investigation by immunohistochemistry of adhesion molecules confirmed the increase in the basal expression of both P-selectin and platelet endothelial cell adhesion molecule 1 on pulmonary endothelial cells. All together, our results suggest the involvement of endothelial cells in the development of radiation-induced inflammatory and thrombotic processes.


Assuntos
Coagulação Sanguínea/efeitos da radiação , Células Endoteliais/efeitos da radiação , Inflamação/etiologia , Pulmão/efeitos da radiação , Irradiação Corporal Total , Animais , Antibacterianos/farmacologia , Quimiocina CXCL1 , Quimiocinas CXC/sangue , Células Endoteliais/fisiologia , Fibrinogênio/análise , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Interleucina-6/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Radiat Res ; 160(5): 593-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14565822

RESUMO

Adhesion of platelets to the endothelium is believed to be a major factor contributing to thrombosis and vascular occlusion after radiotherapy or endovascular irradiation. In the present study, platelet-endothelium interactions were analyzed in vivo by intravital microscopy in mesenteric venules of mice according to three parameters: (1) platelet rolling, (2) platelet adhesion, and (3) the presence of platelet clusters. A 10-Gy total-body irradiation of mice resulted in an increase in the frequency of appearance of these three types of platelet-endothelium interactions in postcapillary venules 6 and 24 h after exposure, whereas only minor alterations were seen in large venules. In addition, the duration of platelet adhesion was increased 24 h after irradiation in both postcapillary and large venules. However, P-selectin was not up-regulated on the platelet membrane and platelet-leukocytes were not seen rolling together, suggesting that changes in platelet-endothelial cell interaction result from endothelial cell activation rather than platelet activation. Our data suggest that irradiation transforms resting endothelial cells to a pro-adhesive surface for platelets, which could ultimately lead to thrombosis.


Assuntos
Plaquetas/patologia , Plaquetas/efeitos da radiação , Endotélio Vascular/patologia , Endotélio Vascular/efeitos da radiação , Ativação Plaquetária/efeitos da radiação , Irradiação Corporal Total , Animais , Velocidade do Fluxo Sanguíneo , Radioisótopos de Césio , Endotélio Vascular/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Adesividade Plaquetária/efeitos da radiação , Vênulas/patologia , Vênulas/fisiopatologia , Vênulas/efeitos da radiação
19.
Can J Physiol Pharmacol ; 80(7): 717-21, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12182328

RESUMO

Thrombopoietin is the major regulator of platelet production and a stimulator of multilineage hematopoietic recovery following irradiation. The efficacy of three different schedules of thrombopoietin administration was tested on blood cell counts, hematopoietic bone marrow progenitors, and 30-day animal survival in C57BL6/J mice receiving a total body irradiation, with doses ranging from 7 to 10 Gy. A single dose of murine thrombopoietin was injected 2 h before, 2 h after, or 24 h after irradiation. Thrombopoietin promoted multilineage hematopoietic recovery in comparison to placebo up to 9 Gy at the level of both blood cells and bone marrow progenitors, whatever the schedule of administration. The injection of thrombopoietin 2 h before or 2 h after irradiation equally led to the best results concerning hematopoietic recovery. On the other hand, thrombopoietin administration promoted 30-day survival up to 9 Gy with the highest efficacy obtained when thrombopoietin was injected either 2 h before or 2 h after irradiation. However, when its injection was delayed at 24 h, thrombopoietin had almost no effect on survival of 9 Gy irradiated mice. Altogether, our results show that the time schedule for thrombopoietin injection is of critical importance and when thrombopoietin is administered before or shortly after irradiation, it efficiently promotes mice survival to supra-lethal irradiation (up to 9 Gy) in relation with hematopoietic recovery.


Assuntos
Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/tratamento farmacológico , Trombopoetina/uso terapêutico , Animais , Contagem de Células Sanguíneas , Relação Dose-Resposta a Droga , Granulócitos/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Fatores de Tempo
20.
Radiat Res ; 157(6): 642-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12005542

RESUMO

In the present study, we evaluated the therapeutic potential of recombinant human IL11 in lethally irradiated C57BL6/J mice exposed to gamma rays. IL11 administered for 5 consecutive days beginning 2 h after total-body irradiation with 8 or 9 Gy 60Co gamma rays resulted in a significant increase in 30-day survival. When IL11 was administered, only a slight improvement in the hematopoietic status (both blood cell counts and progenitor cells) was observed after an 8-Gy exposure, and no improvement in hematopoietic reconstitution was observed after 9 Gy total-body irradiation. The enhancement of fibrinogen in the plasma of irradiated animals suggested the importance of infections in the death of animals. IL11 was able to limit the increase in fibrinogen levels. However, prevention of bacterial infections by antibiotic treatment, although it delayed death, was ineffective in promoting survival either in placebo-treated and IL11-treated mice. IL11 was administered along with thrombopoietin (TPO) or bone marrow transplantation to limit the hematopoietic syndrome, in addition to antibiotic treatment. When IL11 was combined with TPO, a potent stimulator of hematopoiesis, the survival of animals which had been irradiated with 10 Gy 137Cs gamma rays was increased significantly compared to those treated with IL11 or TPO alone. Furthermore, an interactive effect of TPO and IL11 on hematopoietic reconstitution was observed. Similarly, IL11 in combination with bone marrow transplantation enhanced survival after 15 Gy 137Cs gamma rays. These data suggest that the effect of IL11 on the hematopoietic system is only moderate when it is used alone in supralethally irradiated mice but that the effect is improved in the presence of a hematopoietic growth factor or bone marrow transplantation.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Raios gama/efeitos adversos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-11/farmacologia , Trombopoetina/farmacologia , Irradiação Corporal Total/efeitos adversos , Animais , Contagem de Células Sanguíneas , Células Sanguíneas/efeitos da radiação , Plaquetas/efeitos dos fármacos , Plaquetas/efeitos da radiação , Peso Corporal/efeitos dos fármacos , Peso Corporal/efeitos da radiação , Transplante de Medula Óssea , Sinergismo Farmacológico , Fibrinogênio/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos da radiação , Proteínas Recombinantes/farmacologia , Taxa de Sobrevida , Fatores de Tempo , Irradiação Corporal Total/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA