Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 53(3): e2250154, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564641

RESUMO

The sustained immunosuppression associated with severe sepsis favors an increased susceptibility to secondary infections and remains incompletely understood. Plasmablast and plasma cell subsets, whose primary function is to secrete antibodies, have emerged as important suppressive populations that expand during sepsis. In particular, sepsis supports CD39hi plasmablast metabolic reprogramming associated with adenosine-mediated suppressive activity. Arginine deficiency has been linked to an increased risk of secondary infections in sepsis. Overcoming arginine shortage by citrulline administration efficiently improves sepsis-induced immunosuppression and secondary infections in the cecal ligation and puncture murine model. Here, we aimed to determine the impact of citrulline administration on B cell suppressive responses in sepsis. We demonstrate that restoring arginine bioavailability through citrulline administration markedly reduces the dominant extrafollicular B cell response, decreasing the immunosuppressive LAG3+ and CD39+ plasma cell populations, and restoring splenic follicles. At the molecular level, the IRF4/MYC-mediated B cell reprogramming required for extrafollicular plasma cell differentiation is shunted in the splenic B cells of mice fed with citrulline. Our study reveals a prominent impact of nutrition on B cell responses and plasma cell differentiation and further supports the development of citrulline-based clinical studies to prevent sepsis-associated immune dysfunction.


Assuntos
Coinfecção , Sepse , Camundongos , Animais , Citrulina/metabolismo , Arginina , Imunossupressores , Diferenciação Celular
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173051

RESUMO

Severe sepsis induces a sustained immune dysfunction associated with poor clinical behavior. In particular, lymphopenia along with increased lymphocyte apoptosis and decreased lymphocyte proliferation, enhanced circulating regulatory T cells (Treg), and the emergence of myeloid-derived suppressor cells (MDSCs) have all been associated with persistent organ dysfunction, secondary infections, and late mortality. The mechanisms involved in MDSC-mediated T cell dysfunction during sepsis share some features with those described in malignancies such as arginine deprivation. We hypothesized that increasing arginine availability would restore T cell function and decrease sepsis-induced immunosuppression. Using a mouse model of sepsis based on cecal ligation and puncture and secondary pneumonia triggered by methicillin-resistant Staphylococcus aureus inoculation, we demonstrated that citrulline administration was more efficient than arginine in increasing arginine plasma levels and restoring T cell mitochondrial function and proliferation while reducing sepsis-induced Treg and MDSC expansion. Because there is no specific therapeutic strategy to restore immune function after sepsis, we believe that our study provides evidence for developing citrulline-based clinical studies in sepsis.


Assuntos
Citrulina/farmacologia , Mitocôndrias/metabolismo , Sepse/tratamento farmacológico , Animais , Arginina/deficiência , Arginina/metabolismo , Disponibilidade Biológica , Citrulina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Tolerância Imunológica/imunologia , Terapia de Imunossupressão/métodos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Sepse/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA