Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 201(5): 429-439, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253061

RESUMO

The current geopolitical context has brought the radiological nuclear risk to the forefront of concerns. High-dose localized radiation exposure leads to the development of a musculocutaneous radiation syndrome affecting the skin and subcutaneous muscles. Despite the implementation of a gold standard treatment based on an invasive surgical procedure coupled with autologous cell therapy, a muscular defect frequently persists. Targeting the modulation of the Hedgehog (Hh) signaling pathway appears to be a promising therapeutic approach. Activation of this pathway enhances cell survival and promotes proliferation after irradiation, while inhibition by Cyclopamine facilitates differentiation. In this study, we compared the effects of three antagonists of Hh, Cyclopamine (CA), Vismodegib (VDG) and Sonidegib (SDG) on differentiation. A stable cell line of murine myoblasts, C2C12, was exposed to X-ray radiation (5 Gy) and treated with CA, VDG or SDG. Analysis of proliferation, survival (apoptosis), morphology, myogenesis genes expression and proteins production were performed. According to the results, VDG does not have a significant impact on C2C12 cells. SDG increases the expression/production of differentiation markers to a similar extent as CA, while morphologically, SDG proves to be more effective than CA. To conclude, SDG can be used in the same way as CA but already has a marketing authorization with an indication against basal cell cancers, facilitating their use in vivo. This proof of concept demonstrates that SDG represents a promising alternative to CA to promotes differentiation of murine myoblasts. Future studies on isolated and cultured satellite cells and in vivo will test this proof of concept.


Assuntos
Proteínas Hedgehog , Músculo Esquelético , Regeneração , Transdução de Sinais , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Músculo Esquelético/efeitos da radiação , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Linhagem Celular , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação , Piridinas/farmacologia , Alcaloides de Veratrum/farmacologia , Anilidas/farmacologia , Compostos de Bifenilo/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos da radiação
2.
Nat Commun ; 5: 3415, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24594650

RESUMO

Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material--allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.

3.
PLoS One ; 7(3): e32053, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412853

RESUMO

In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.


Assuntos
Replicação do DNA/genética , Modelos Genéticos , Algoritmos , Animais , Células da Medula Óssea/metabolismo , Simulação por Computador , Cinética , Camundongos , Células Precursoras de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA