Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Prev Res (Phila) ; 17(2): 59-75, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37956420

RESUMO

Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE: Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.


Assuntos
Leucemia Promielocítica Aguda , PPAR delta , Animais , Camundongos , Catepsina G , Dieta Hiperlipídica/efeitos adversos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Obesidade/complicações , Proteínas de Fusão Oncogênica/genética , PPAR delta/uso terapêutico
2.
Sci Signal ; 16(816): eade0326, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113337

RESUMO

Innate immune responses to coronavirus infections are highly cell specific. Tissue-resident macrophages, which are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients but are inconsistently infected in vitro, exert critical but conflicting effects by secreting both antiviral type I interferons (IFNs) and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for the treatment of coronavirus disease 2019 (COVID-19), indiscriminately suppress both responses, possibly impairing viral clearance. Here, we established in vitro cell culture systems that enabled us to separately investigate the cell-intrinsic and cell-extrinsic proinflammatory and antiviral activities of mouse macrophages infected with the prototypical murine coronavirus MHV-A59. We showed that the nuclear factor κB-dependent inflammatory response to viral infection was selectively inhibited by loss of the lysine demethylase LSD1, which was previously implicated in innate immune responses to cancer, with negligible effects on the antiviral IFN response. LSD1 ablation also enhanced an IFN-independent antiviral response, blocking viral egress through the lysosomal pathway. The macrophage-intrinsic antiviral and anti-inflammatory activity of Lsd1 inhibition was confirmed in vitro and in a humanized mouse model of SARS-CoV-2 infection. These results suggest that LSD1 controls innate immune responses against coronaviruses at multiple levels and provide a mechanistic rationale for potentially repurposing LSD1 inhibitors for COVID-19 treatment.


Assuntos
COVID-19 , Lisina , Animais , Humanos , Camundongos , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Citocinas/metabolismo , SARS-CoV-2/metabolismo
3.
Mol Cancer Res ; 20(7): 1108-1121, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348729

RESUMO

In patients with trastuzumab-resistant HER2-positive breast cancer, the combination of everolimus (mTORC1 inhibitor) with trastuzumab failed to show a clinically significant benefit. However, the combination of mTOR inhibition and the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) remains unexplored. We tested T-DM1 plus everolimus in a broad panel of HER2-positive breast cancer cell lines. The combination was superior to T-DM1 alone in four cell lines (HCC1954, SKBR3, EFM192A, and MDA-MB-36) and in two cultures from primary tumor cells derived from HER2-positive patient-derived xenografts (PDX), but not in BT474 cells. In the trastuzumab-resistant HCC1954 cell line, we characterized the effects of the combination using TAK-228 (mTORC1 and -2 inhibitor) and knockdown of the different mTOR complex components. T-DM1 did not affect mTOR downstream signaling nor induct autophagy. Importantly, mTOR inhibition increased intracellular T-DM1 levels, leading to increased lysosomal accumulation of the compound. The increased efficacy of mTOR inhibition plus T-DM1 was abrogated by lysosome inhibitors (chloroquine and bafilomycin A1). Our experiments suggest that BT474 are less sensitive to T-DM1 due to lack of optimal lysosomal processing and intrinsic resistance to the DM1 moiety. Finally, we performed several in vivo experiments that corroborated the superior activity of T-DM1 and everolimus in HCC1954 and PDX-derived mouse models. In summary, everolimus in combination with T-DM1 showed strong antitumor effects in HER2-positive breast cancer, both in vitro and in vivo. This effect might be related, at least partially, to mTOR-dependent lysosomal processing of T-DM1, a finding that might apply to other ADCs that require lysosomal processing. IMPLICATIONS: Inhibition of mTOR increases the antitumor activity of T-DM1, supporting that the combination of mTOR inhibitors and antibody-drug conjugates warrants clinical evaluation in patients with HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Imunoconjugados , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Everolimo/farmacologia , Feminino , Humanos , Imunoconjugados/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Receptor ErbB-2/metabolismo , Serina-Treonina Quinases TOR , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Lett ; 507: 1-12, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33684534

RESUMO

Large cell carcinoma (LCC) is a rare and aggressive lung cancer subtype with poor prognosis and no targeted therapies. Tumor-associated fibroblasts (TAFs) derived from LCC tumors exhibit premature senescence, and coculture of pulmonary fibroblasts with LCC cell lines selectively induces fibroblast senescence, which in turn drives LCC cell growth and invasion. Here we identify MMP1 as overexpressed specifically in LCC cell lines, and we show that expression of MMP1 by LCC cells is necessary for induction of fibroblast senescence and consequent tumor promotion in both cell culture and mouse models. We also show that MMP1, in combination with TGF-ß1, is sufficient to induce fibroblast senescence and consequent LCC promotion. Furthermore, we implicate PAR-1 and oxidative stress in MMP1/TGF-ß1-induced TAF senescence. Our results establish an entirely new role for MMP1 in cancer, and support a novel therapeutic strategy in LCC based on targeting senescent TAFs.


Assuntos
Fibroblastos Associados a Câncer/enzimologia , Carcinoma de Células Grandes/enzimologia , Proliferação de Células , Senescência Celular , Neoplasias Pulmonares/enzimologia , Metaloproteinase 1 da Matriz/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metaloproteinase 1 da Matriz/genética , Camundongos Nus , Estresse Oxidativo , Comunicação Parácrina , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Carga Tumoral
5.
Sci Rep ; 5: 10027, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25941117

RESUMO

Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3ß (GSK-3ß) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3ß behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3ß and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Autofagia , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Humanos , Células MCF-7 , Transdução de Sinais
6.
Clin Cancer Res ; 21(9): 2157-66, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25623215

RESUMO

PURPOSE: Patients with colorectal cancer who respond to the anti-EGFR antibody cetuximab often develop resistance within several months of initiating therapy. To design new lines of treatment, the molecular landscape of resistant tumors must be ascertained. We investigated the role of mutations in the EGFR signaling axis on the acquisition of resistance to cetuximab in patients and cellular models. EXPERIMENTAL DESIGN: Tissue samples were obtained from 37 patients with colorectal cancer who became refractory to cetuximab. Colorectal cancer cells sensitive to cetuximab were treated until resistant derivatives emerged. Mutational profiling of biopsies and cell lines was performed. Structural modeling and functional analyses were performed to causally associate the alleles to resistance. RESULTS: The genetic profile of tumor specimens obtained after cetuximab treatment revealed the emergence of a complex pattern of mutations in EGFR, KRAS, NRAS, BRAF, and PIK3CA genes, including two novel EGFR ectodomain mutations (R451C and K467T). Mutational profiling of cetuximab-resistant cells recapitulated the molecular landscape observed in clinical samples and revealed three additional EGFR alleles: S464L, G465R, and I491M. Structurally, these mutations are located in the cetuximab-binding region, except for the R451C mutant. Functionally, EGFR ectodomain mutations prevent binding to cetuximab but a subset is permissive for interaction with panitumumab. CONCLUSIONS: Colorectal tumors evade EGFR blockade by constitutive activation of downstream signaling effectors and through mutations affecting receptor-antibody binding. Both mechanisms of resistance may occur concomitantly. Our data have implications for designing additional lines of therapy for patients with colorectal cancer who relapse upon treatment with anti-EGFR antibodies.


Assuntos
Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genes erbB-1/genética , Mutação , Antineoplásicos/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Análise Mutacional de DNA , Espaço Extracelular/genética , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase em Tempo Real
7.
J Neuroinflammation ; 9: 87, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22559833

RESUMO

BACKGROUND: Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition. METHODS: Young male Wistar rats were injected with 1 µL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 µL of LPS and 24 h later 1 µL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining. RESULTS: LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone. CONCLUSIONS: Our results identify neuroinflammation as a risk factor that increases susceptibility to neurodegeneration induced by proteasome inhibition. These results highlight the modulation of neuroinflammation as a mechanism for neuronal protection that could be relevant in situations where both factors are present, such as aging and neurodegenerative diseases.


Assuntos
Hipocampo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Degeneração Neural/induzido quimicamente , Inibidores de Proteassoma/toxicidade , Acetilcisteína/análogos & derivados , Acetilcisteína/toxicidade , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Sinergismo Farmacológico , Hipocampo/enzimologia , Hipocampo/patologia , Inflamação/induzido quimicamente , Inflamação/epidemiologia , Inflamação/patologia , Masculino , Degeneração Neural/epidemiologia , Degeneração Neural/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Wistar , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
8.
Free Radic Biol Med ; 49(8): 1290-7, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20678570

RESUMO

Maintaining protein homeostasis is vital to cell viability, with numerous studies demonstrating a role for proteasome inhibition occurring during the aging of a variety of tissues and, presumably, contributing to the disruption of cellular homeostasis during aging. In this study we sought to elucidate the differences between neurons and astrocytes in regard to basal levels of protein synthesis, proteasome-mediated protein degradation, and sensitivity to cytotoxicity after proteasome inhibitor treatment. In these studies we demonstrate that neurons have an increased vulnerability, compared to astrocyte cultures, to proteasome-inhibitor-induced cytotoxicity. No significant difference was observed between these two cell types in regard to the basal rates of protein synthesis, or basal rates of protein degradation, in the pool of short-lived proteins. After proteasome inhibitor treatment neuronal crude lysates were observed to undergo greater increases in the levels of ubiquitinated and oxidized proteins and selectively exhibited increased levels of newly synthesized proteins accumulating within the insoluble protein pool, compared to astrocytes. Together, these data suggest a role for increased oxidized proteins and sequestration of newly synthesized proteins in the insoluble protein pool, as potential mediators of the selective neurotoxicity after proteasome inhibitor treatment. The implications for neurons exhibiting increased sensitivity to acute proteasome inhibitor exposure, and the corresponding changes in protein homeostasis observed after proteasome inhibition, are discussed in the context of both aging and age-related disorders of the nervous system.


Assuntos
Astrócitos/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Leupeptinas/farmacologia , Neurônios/metabolismo , Estresse Oxidativo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Extratos Celulares , Células Cultivadas , Inibidores de Cisteína Proteinase/efeitos adversos , Inibidores de Cisteína Proteinase/uso terapêutico , Humanos , Leupeptinas/efeitos adversos , Leupeptinas/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Oxirredução/efeitos dos fármacos , Inibidores de Proteassoma , Ratos , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
9.
Aging Cell ; 8(6): 654-65, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19747230

RESUMO

Dysfunctions of the ubiquitin proteasome system (UPS) have been proposed to be involved in the aetiology and/or progression of several age-related neurodegenerative disorders. However, the mechanisms linking proteasome dysfunction to cell degeneration are poorly understood. We examined in young and aged rat hippocampus the activation of the unfolded protein response (UPR) under cellular stress induced by proteasome inhibition. Lactacystin injection blocked proteasome activity in young and aged animals in a similar extent and increased the amount of ubiquitinated proteins. Young animals activated the three UPR arms, IRE1alpha, ATF6alpha and PERK, whereas aged rats failed to induce the IRE1alpha and ATF6alpha pathways. In consequence, aged animals did not induce the expression of pro-survival factors (chaperones, Bcl-XL and Bcl-2), displayed a more sustained expression of pro-apoptotic markers (CHOP, Bax, Bak and JKN), an increased caspase-3 processing. At the cellular level, proteasome inhibition induced neuronal damage in young and aged animals as assayed using Fluorojade-B staining. However, degenerating neurons were evident as soon as 24 h postinjection in aged rats, but it was delayed up to 3 days in young animals. Our findings show evidence supporting age-related dysfunctions in the UPR activation as a potential mechanism linking protein accumulation to cell degeneration. An imbalance between pro-survival and pro-apoptotic proteins, because of noncanonical activation of the UPR in aged rats, would increase the susceptibility to cell degeneration. These findings add a new molecular vision that might be relevant in the aetiology of several age-related neurodegenerative disorders.


Assuntos
Acetilcisteína/análogos & derivados , Envelhecimento , Hipocampo/metabolismo , Hipocampo/patologia , Degeneração Neural/metabolismo , Inibidores de Proteassoma , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Biomarcadores , Caspase 3/metabolismo , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Degeneração Neural/induzido quimicamente , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA