Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(5): 858-865, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516188

RESUMO

PURPOSE: Androgen deprivation regenerates the thymus in adults, expanding of T-cell receptor V ß repertoire in blood and lymphoid organs and tumor-infiltrating lymphocytes in human prostate tumors. In melanoma murine models, androgen receptor promotes metastases and androgen blockade potentiates antitumor vaccine efficacy. This phase I study evaluated the safety, efficacy, and pharmocodynamics of androgen deprivation with the gonadotropin releasing hormone (GnRH) agonist triptorelin combined with nivolumab in male patients with melanoma resistant to anti-PD-1. PATIENTS AND METHODS: Adult male patients with advanced melanoma who progressed under anti-PD-1 containing regimens received triptorelin 3.75 mg every 4 weeks, nivolumab 3 mg/kg every 2 weeks, and bicalutamide 50 mg once daily during the first 28 days. Tumor response was first assessed after 3 months; adverse events (AE) were monitored throughout the study. T-cell receptor excision circles (TREC), a biomarker of thymus activity, were explored throughout the study. RESULTS: Of 14 patients, 4 were locally advanced and 10 had distant metastases. There were no grade 4 or 5 AEs. Five grade three AEs were reported in 4 patients. According to RECIST v1.1, best overall response was partial response (PR) in one patient with a pancreas metastasis, stable disease (SD) in 5 patients, and progressive disease in 8 patients. According to iRECIST, a second PR occurred after an initial pseudoprogression, TRECs increased in 2 patients, one with PR who also had an increase in TILs, and the second with SD. CONCLUSIONS: This combination was well tolerated. Disease control was obtained in 42.8% (RECIST) and 50% (iRECIST). The evidence for thymus rejuvenation was limited.


Assuntos
Melanoma , Neoplasias da Próstata , Adulto , Humanos , Masculino , Animais , Camundongos , Nivolumabe/uso terapêutico , Antagonistas de Androgênios/efeitos adversos , Androgênios/uso terapêutico , Pamoato de Triptorrelina , Melanoma/tratamento farmacológico , Melanoma/patologia , Receptores de Antígenos de Linfócitos T/uso terapêutico
2.
Clin Transl Sci ; 15(1): 55-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33742767

RESUMO

Inhibitor of apoptosis proteins (IAPs) regulate apoptosis and modulate NF-κB signaling thereby driving expression of genes involved in immune/inflammatory responses. The orally available IAP antagonist Debio 1143 has potential to enhance tumor response to chemoradiotherapy and/or immunotherapy. Patients with pre-operative squamous cell carcinomas of the head and neck (SCCHN) received: Debio 1143 monotherapy (200 mg/day [D]1-15 +/- 2); Debio 1143 (200 mg/day D1-15 +/- 2) plus cisplatin (40 mg/m2 D 1 and 8); cisplatin alone (40 mg/m2 D 1 and 8; EudraCT: 2014-004655-31). Pharmacokinetic/pharmacodynamic effects were assessed in plasma and resected tumors. Primary end point; effect of Debio 1143 on cellular IAP-1 (cIAP-1). Levels of cIAP-1/-2, X-linked inhibitor of apoptosis protein (XIAP), tumor infiltrating lymphocytes (TILs), including CD8+ T cells, programmed cell death protein 1 (PD-1), PD-ligand 1 (PD-L1), and gene expression were also analyzed. Twenty-three of 26 patients completed treatment. In the Debio 1143 monotherapy cohort (n = 13), mean tumor concentrations of Debio 1143 were 18-fold (maximum 55.2-fold) greater than in plasma, exceeding the half-maximal inhibitory concentration for cIAPs and XIAP by 100 to 1000-fold, with significant engagement/degradation of cIAP-1 (p < 0.05). Overall, levels of CD8+ TILs, PD-1, and PD-L1 positive immune cells increased significantly (p < 0.05) following Debio 1143 treatment. Changes were observed in the expression of genes related to NF-κB signaling. Treatments were well-tolerated. Debio 1143 penetrated SCCHN tumors, engaged cIAP-1, and induced immune inflammatory changes in the tumor microenvironment. Based on the mode of action demonstrated here and in previous studies, these data support future combinations of Debio 1143 with immune-checkpoint agents.


Assuntos
Proteínas Inibidoras de Apoptose/farmacologia , Proteínas Inibidoras de Apoptose/farmacocinética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Ensaios Clínicos como Assunto , Estudos de Coortes , Humanos , Proteínas Inibidoras de Apoptose/administração & dosagem , Farmacogenética
3.
Acta Derm Venereol ; 94(6): 672-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24604074

RESUMO

Debio 0932 is a novel oral heat shock protein 90 (Hsp90) inhibitor developed for anti-cancer therapy. Surprising-ly, during the first clinical trial, one psoriasis patient experienced complete remission of his skin manifestation. However, a possible therapeutic utility of Hsp90 in psoriasis has not previously been reported. The objective of the present study was to explore the ability of Debio 0932 to alleviate psoriasis in a preclinical model. A psoriasis xenograft transplantation model was employed where skin from 5 psoriasis patients was transplanted onto immunodeficient mice (8 xenografts per donor). Debio 0932 was administered perorally daily for 3 weeks and resulted in significant clinical alleviation of psoriasis by day 11 and reduced epidermal thickness evaluated post-treatment. Alleviation of psoriasis in the psoriasis xenograft transplantation model, which may be due to Hsp90's involvement in signalling pathways that are up-regulated in psoriasis, substantiates a potential role of Debio 0932 in psoriasis treatment.


Assuntos
Benzodioxóis/administração & dosagem , Fármacos Dermatológicos/administração & dosagem , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Imidazóis/administração & dosagem , Psoríase/tratamento farmacológico , Transplante de Pele , Pele/efeitos dos fármacos , Administração Oral , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Xenoenxertos , Humanos , Camundongos SCID , Pessoa de Meia-Idade , Psoríase/metabolismo , Psoríase/patologia , Indução de Remissão , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Fatores de Tempo
4.
Hepatology ; 55(5): 1333-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22135208

RESUMO

UNLABELLED: Alisporivir (Debio-025) is an analogue of cyclosporine A and represents the prototype of a new class of non-immunosuppressive cyclophilin inhibitors. In vitro and in vivo studies have shown that alisporivir inhibits hepatitis C virus (HCV) replication, and ongoing clinical trials are exploring its therapeutic potential in patients with chronic hepatitis C. Recent data suggest that the antiviral effect is mediated by inhibition of cyclophilin A, which is an essential host factor in the HCV life cycle. However, alisporivir also inhibits mitochondrial permeability transition by binding to cyclophilin D. Because HCV is known to affect mitochondrial function, we explored the effect of alisporivir on HCV protein-mediated mitochondrial dysfunction. Through the use of inducible cell lines, which allow to investigate the effects of HCV polyprotein expression independent from viral RNA replication and which recapitulate the major alterations of mitochondrial bioenergetics observed in infectious cell systems, we show that alisporivir prevents HCV protein-mediated decrease of cell respiration, collapse of mitochondrial membrane potential, overproduction of reactive oxygen species and mitochondrial calcium overload. Strikingly, some of the HCV-mediated mitochondrial dysfunctions could even be rescued by alisporivir. CONCLUSION: These observations provide new insights into the pathogenesis of HCV-related liver disease and reveal an additional mechanism of action of alisporivir that is likely beneficial in the treatment of chronic hepatitis C.


Assuntos
Ciclosporina/farmacologia , Hepacivirus/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Respiração Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Ciclofilinas/antagonistas & inibidores , Hepacivirus/fisiologia , Humanos , Imuno-Histoquímica , Potenciais da Membrana , Mitocôndrias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sensibilidade e Especificidade
5.
J Mol Cell Cardiol ; 51(1): 90-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21463633

RESUMO

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Potenciais de Ação , Animais , Biotinilação , Western Blotting , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Cobaias , Células HEK293 , Humanos , Imunoprecipitação , Ativação do Canal Iônico/genética , Síndrome do QT Longo/genética , Mutação , Miocárdio/metabolismo , Ubiquitina-Proteína Ligases Nedd4 , Técnicas de Patch-Clamp , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
6.
Circ Res ; 104(6): 758-69, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19213956

RESUMO

Membrane-associated guanylate kinase (MAGUK) proteins are major determinants of the organization of ion channels in the plasma membrane in various cell types. Here, we investigated the interaction between the MAGUK protein SAP97 and cardiac Kv4.2/3 channels, which account for a large part of the outward potassium current, I(to), in heart. We found that the Kv4.2 and Kv4.3 channels C termini interacted with SAP97 via a SAL amino acid sequence. SAP97 and Kv4.3 channels were colocalized in the sarcolemma of cardiomyocytes. In CHO cells, SAP97 clustered Kv4.3 channels in the plasma membrane and increased the current independently of the presence of KChIP and dipeptidyl peptidase-like protein-6. Suppression of SAP97 by using short hairpin RNA inhibited I(to) in cardiac myocytes, whereas its overexpression by using an adenovirus increased I(to). Kv4.3 channels without the SAL sequence were no longer regulated by Ca2+/calmodulin kinase (CaMK)II inhibitors. In cardiac myocytes, pull-down and coimmunoprecipitation assays showed that the Kv4 channel C terminus, SAP97, and CaMKII interact together, an interaction suppressed by SAP97 silencing and enhanced by SAP97 overexpression. In HEK293 cells, SAP97 silencing reproduced the effects of CaMKII inhibition on current kinetics and suppressed Kv4/CaMKII interactions. In conclusion, SAP97 is a major partner for surface expression and CaMKII-dependent regulation of cardiac Kv4 channels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Canais de Potássio Shal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Células CHO , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular , Cricetinae , Cricetulus , Proteína 1 Homóloga a Discs-Large , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas de Membrana/genética , Proteínas Musculares/genética , Ratos , Ratos Wistar , Sarcolema/genética , Canais de Potássio Shal/genética
7.
Biochem Biophys Res Commun ; 348(4): 1455-62, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16930557

RESUMO

In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5.


Assuntos
Proteínas Musculares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Canais de Sódio/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Condutividade Elétrica , Humanos , Proteínas Musculares/química , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 3 , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Deleção de Sequência , Canais de Sódio/química , Técnicas do Sistema de Duplo-Híbrido
8.
Am J Physiol Cell Physiol ; 288(3): C692-701, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15548568

RESUMO

The voltage-gated Na(+) channels (Na(v)) form a family composed of 10 genes. The COOH termini of Na(v) contain a cluster of amino acids that are nearly identical among 7 of the 10 members. This COOH-terminal sequence, PPSYDSV, is a PY motif known to bind to WW domains of E3 protein-ubiquitin ligases of the Nedd4 family. We recently reported that cardiac Na(v)1.5 is regulated by Nedd4-2. In this study, we further investigated the molecular determinants of regulation of Na(v) proteins. When expressed in HEK-293 cells and studied using whole cell voltage clamping, the neuronal Na(v)1.2 and Na(v)1.3 were also downregulated by Nedd4-2. Pull-down experiments using fusion proteins bearing the PY motif of Na(v)1.2, Na(v)1.3, and Na(v)1.5 indicated that mouse brain Nedd4-2 binds to the Na(v) PY motif. Using intrinsic tryptophan fluorescence imaging of WW domains, we found that Na(v)1.5 PY motif binds preferentially to the fourth WW domain of Nedd4-2 with a K(d) of approximately 55 muM. We tested the binding properties and the ability to ubiquitinate and downregulate Na(v)1.5 of three Nedd4-like E3s: Nedd4-1, Nedd4-2, and WWP2. Despite the fact that along with Nedd4-2, Nedd4-1 and WWP2 bind to Na(v)1.5 PY motif, only Nedd4-2 robustly ubiquitinated and downregulated Na(v)1.5. Interestingly, coexpression of WWP2 competed with the effect of Nedd4-2. Finally, using brefeldin A, we found that Nedd4-2 accelerated internalization of Na(v)1.5 stably expressed in HEK-293 cells. This study shows that Nedd4-dependent ubiquitination of Na(v) channels may represent a general mechanism regulating the excitability of neurons and myocytes via modulation of channel density at the plasma membrane.


Assuntos
Isoformas de Proteínas/metabolismo , Canais de Sódio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Linhagem Celular , Regulação para Baixo , Eletrofisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Ativação do Canal Iônico , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Ubiquitina-Proteína Ligases Nedd4 , Peptídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Canais de Sódio/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA