Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 73(4): 829-838, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739537

RESUMO

Hypertension is an established risk factor for subsequent cardiovascular diseases, with Ang II (angiotensin II) playing a major role in mediating thrombotic and inflammatory abnormalities. Although T cells and IL-6 (interleukin-6) play an important role in adaptive immune responses, little is known about their role(s) in the thromboinflammatory responses associated with Ang II. Here we show using intravital microscopy coupled with the light/dye injury model that Rag-1 deficient (Rag-1-/-) and IL-6 deficient (IL-6-/-) mice are afforded protection against Ang II-induced thrombosis. Blocking IL-6 receptors (using CD126 and gp130 antibodies) significantly diminished Ang II-mediated thrombosis and inflammatory cell recruitment in mice. Furthermore, the adoptive transfer of IL-6-/--derived T cells into Rag-1-/- mice failed to accelerate Ang II-induced thrombosis compared with Rag-1-/- mice reconstituted with wild-type-derived T cells, suggesting T cell IL-6 mediates the thrombotic abnormalities associated Ang II hypertension. Interestingly, adoptive transfer of WT T cells into Rag-1-/-/Ang II mice resulted in increased numbers of immature platelets, which constitutes a more active platelet population, that is, prothrombotic and proinflammatory. To translate our in vivo findings, we used clinical samples to demonstrate that IL-6 also predisposes platelets to an interaction with collagen receptors, thereby increasing the propensity for platelets to aggregate and cause thrombosis. In summary, we provide compelling evidence for the involvement of IL-6, IL-6R, and T-cell-dependent IL-6 signaling in Ang II-induced thromboinflammation, which may provide new therapeutic possibilities for drug discovery programs for the management of hypertension.


Assuntos
Imunidade Adaptativa , Pressão Sanguínea/fisiologia , Hipertensão/complicações , Hipertensão/imunologia , Interleucina-6/metabolismo , Linfócitos T/imunologia , Trombose/imunologia , Angiotensina II/toxicidade , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação/efeitos dos fármacos , Transdução de Sinais , Trombose/induzido quimicamente , Trombose/metabolismo
2.
Biomed Pharmacother ; 107: 1591-1600, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30257377

RESUMO

The role of lymphatic vessels in myocarditis is largely unknown, while it has been shown to play a key role in other inflammatory diseases. We aimed to investigate the role of lymphatic vessels in myocarditis using in vivo model induced with Theiler's murine encephalomyelitis virus (TMEV) and in vitro model with rat cardiac lymphatic muscle cells (RCLMC). In the TMEV model, we found that upregulation of a set of inflammatory mediator genes, including interleukin (IL)-1ß, tumor necrosis factor (TNF)-αand COX-2 were associated with disease activity. Thus, using in vitro collagen gel contraction assays, we decided to clarify the role(s) of these mediators by testing contractility of RCLMC in response to IL-1ß and TNF-α individually and in combination, in the presence or absence of: IL-1 receptor antagonist (Anakinra); cyclooxygenase (COX) inhibitors inhibitors (TFAP, diclofenac and DuP-697). IL-1ß impaired RCLMC contractility dose-dependently, while co-incubation with both IL-1ß and TNF-α exhibited synergistic effects in decreasing RCLMC contractility with increased COX-2 expression. Anakinra maintained RCLMC contractility; Anakinra blocked the mobilization of COX-2 induced by IL-1ß with or without TNF-α. COX-2 inhibition blocked the IL-1ß-mediated decrease in RCLMC contractility. Mechanistically, we found that IL-1ß increased prostaglandin (PG) E2 release dose-dependently, while Anakinra blocked IL-1ß mediated PGE2 release. Using prostaglandin E receptor 4 (EP4) receptor antagonist, we demonstrated that EP4 receptor blockade maintained RCLMC contractility following IL-1ß exposure. Our results indicate that IL-1ß reduces RCLMC contractility via COX-2/PGE2 signaling with synergistic cooperation by TNF-α. These pathways may help provoke inflammatory mediator accumulation within the heart, driving progression from acute myocarditis into dilated cardiomyopathy.


Assuntos
Interleucina-1beta/metabolismo , Células Musculares/metabolismo , Miocardite/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/genética , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Contração Muscular/fisiologia , Miocardite/genética , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
3.
FASEB J ; 32(6): 3448-3456, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29452567

RESUMO

Angiotensin II (Ang-II)-induced hypertension is associated with accelerated thrombus formation in arterioles and leukocyte recruitment in venules. The mechanisms that underlie the prothrombotic and proinflammatory responses to chronic Ang-II administration remain poorly understood. We evaluated the role of CD40/CD40 ligand (CD40L) signaling in Ang-II-mediated microvascular responses and assessed whether and how soluble CD40L (sCD40L) contributes to this response. Intravital video microscopy was performed to analyze leukocyte recruitment and dihydrorhodamine-123 oxidation in postcapillary venules. Thrombus formation in cremaster muscle arterioles was induced by using the light/dye endothelial cell injury model. Wild-type (WT), CD40-/-, and CD40L-/- mice received Ang-II for 14 d via osmotic minipumps. Some mice were treated with either recombinant sCD40L or the VLA5 (very late antigen 5; α5ß1) antagonist, ATN-161. Our results demonstrate that CD40-/-, CD40L-/-, and WT mice that were treated with ATN-161 were protected against the thrombotic and inflammatory effects of Ang-II infusion. Infusion of sCD40L into CD40-/- or CD40L-/- mice restored the prothrombotic effect of Ang-II infusion. Mice that were treated with ATN-161 and infused with sCD40L were protected against accelerated thrombosis. Collectively, these novel findings suggest that the mechanisms that underlie Ang-II-dependent thrombotic and inflammatory responses link to the signaling of CD40L via both CD40 and VLA5.-Senchenkova, E. Y., Russell, J., Vital, S. A., Yildirim, A., Orr, A. W., Granger, D. N., Gavins, F. N. E. A critical role for both CD40 and VLA5 in angiotensin II-mediated thrombosis and inflammation.


Assuntos
Angiotensina II/metabolismo , Antígenos CD40/metabolismo , Integrina alfa5beta1/metabolismo , Transdução de Sinais , Trombose/metabolismo , Angiotensina II/genética , Animais , Antígenos CD40/genética , Ligante de CD40/genética , Ligante de CD40/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Integrina alfa5beta1/genética , Masculino , Camundongos , Camundongos Knockout , Trombose/genética , Trombose/patologia
4.
FASEB J ; 32(5): 2381-2394, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29269399

RESUMO

Stroke continues to be a leading cause of death and disability worldwide, yet effective treatments are lacking. Previous studies have indicated that stem-cell transplantation could be an effective treatment. However, little is known about the direct impact of transplanted cells on injured brain tissue. We wanted to help fill this knowledge gap and investigated effects of hematopoietic stem/progenitor cells (HSPCs) on the cerebral microcirculation after ischemia-reperfusion injury (I/RI). Treatment of HSPCs in I/RI for up to 2 wk after cerebral I/RI led to decreased mortality rate, decreased infarct volume, improved functional outcome, reduced microglial activation, and reduced cerebral leukocyte adhesion. Confocal microscopy and fluorescence-activated cell sorting analyses showed transplanted HSPCs emigrate preferentially into ischemic cortex brain parenchyma. We isolated migrated HSPCs from the brain; using RNA sequencing to investigate the transcriptome, we found metallothionein (MT, particularly MT-I) transcripts were dramatically up-regulated. Finally, to confirm the significance of MT, we exogenously administered MT-I after cerebral I/RI and found that it produced neuroprotection in a manner similar to HSPC treatment. These findings provide novel evidence that the mechanism through which HSPCs promote repair after stroke maybe via direct action of HSPC-derived MT-I and could therefore be exploited as a useful therapeutic strategy for stroke.-Smith, H. K., Omura, S., Vital, S. A., Becker, F., Senchenkova, E. Y., Kaur, G., Tsunoda, I., Peirce, S. M., Gavins, F. N. E. Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke.


Assuntos
Circulação Cerebrovascular , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Metalotioneína/biossíntese , Microcirculação , Acidente Vascular Cerebral , Animais , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
5.
Br J Pharmacol ; 174(14): 2393-2408, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28471519

RESUMO

BACKGROUND AND PURPOSE: In recent years, studies have focused on the resolution of inflammation, which can be achieved by endogenous anti-inflammatory agonists such as Annexin A1 (AnxA1). Here, we investigated the effects of mast cells (MCs) on early LPS-induced neutrophil recruitment and the involvement of the AnxA1-formyl peptide receptor 2/ALX (FPR2/ALX or lipoxin A4 receptor) pathway. EXPERIMENTAL APPROACH: Intravital microscopy (IVM) was used to visualize and quantify the effects of LPS (10 µg per mouse i.p.) on murine mesenteric cellular interactions. Furthermore, the role that MCs play in these inflammatory responses was determined in vivo and in vitro, and effects of AnxA1 mimetic peptide Ac2-26 were assessed. KEY RESULTS: LPS increased both neutrophil endothelial cell interactions within the mesenteric microcirculation and MC activation (determined by IVM and ruthenium red dye uptake), which in turn lead to the early stages of neutrophil recruitment. MC recruitment of neutrophils could be blocked by preventing the pro-inflammatory activation (using cromolyn sodium) or enhancing an anti-inflammatory phenotype (using Ac2-26) in MCs. Furthermore, MCs induced neutrophil migration in vitro, and MC stabilization enhanced the release of AnxA1 from neutrophils. Pharmacological approaches (such as the administration of FPR pan-antagonist Boc2, or the FPR2/ALX antagonist WRW4) revealed neutrophil FPR2/ALX to be important in this process. CONCLUSIONS AND IMPLICATIONS: Data presented here provide evidence for a role of MCs, which are ideally positioned in close proximity to the vasculature, to act as sentinel cells in neutrophil extravasation and resolution of inflammation via the AnxA1-FPR2/ALX pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Receptores de Formil Peptídeo/metabolismo , Animais , Anexina A1/química , Anexina A1/farmacologia , Anti-Inflamatórios/química , Cromolina Sódica/química , Cromolina Sódica/farmacologia , Células Endoteliais/efeitos dos fármacos , Microscopia Intravital , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia
6.
Inflamm Bowel Dis ; 22(6): 1326-45, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26950310

RESUMO

BACKGROUND: Inflammation-associated lymphangiogenesis (IAL) is frequently observed in inflammatory bowel diseases. IAL is believed to limit inflammation by enhancing fluid and immune cell clearance. Although monocytes/macrophages (MΦ) are known to contribute to intestinal pathology in inflammatory bowel disease, their role in intestinal IAL has never been studied mechanistically. We investigated contributions of monocytes/MΦ to the development of intestinal inflammation and IAL. METHODS: Because inflammatory monocytes express CC chemokine receptor 2 (CCR2), we used CCR2 diphtheria toxin receptor transgenic (CCR2.DTR) mice, in which monocytes can be depleted by diphtheria toxin injection, and CCR2 mice, which have reduced circulating monocytes. Acute or chronic colitis was induced by dextran sodium sulfate or adoptive transfer of CD4CD45RB T cells, respectively. Intestinal inflammation was assessed by flow cytometry, immunofluorescence, disease activity, and histopathology, whereas IAL was assessed by lymphatic vessel morphology and density. RESULTS: We demonstrated that intestinal MΦ expressed vascular endothelial growth factor-C/D. In acute colitis, monocyte-depleted mice were protected from intestinal injury and showed reduced IAL, which was reversed after transfer of wild-type monocytes into CCR2 mice. In chronic colitis, CCR2 deficiency did not attenuate inflammation but reduced IAL. CONCLUSIONS: We propose a dual role of MΦ in (1) promoting acute inflammation and (2) contributing to IAL. Our data suggest that intestinal inflammation and IAL could occur independently, because IAL was reduced in the absence of monocytes/MΦ, even when inflammation was present. Future inflammatory bowel disease therapies might exploit promotion of IAL and suppression of MΦ independently, to restore lymphatic clearance and reduce inflammation.


Assuntos
Colite/imunologia , Colite/patologia , Linfangiogênese , Vasos Linfáticos/patologia , Macrófagos/imunologia , Monócitos/imunologia , Doença Aguda , Transferência Adotiva , Animais , Doença Crônica , Colite/induzido quimicamente , Sulfato de Dextrana , Feminino , Contagem de Leucócitos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Receptores CCR2/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
8.
J Cereb Blood Flow Metab ; 35(7): 1090-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25966948

RESUMO

Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Encéfalo/patologia , Rastreamento de Células/métodos , Neuroimagem/métodos , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Lesões Encefálicas/diagnóstico , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
9.
J Neurosci Methods ; 249: 99-105, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25936850

RESUMO

BACKGROUND: Stroke is the third leading cause of death and the leading cause of long-term disability in North America. On average, someone in the US has a stroke every 45 s, and worldwide, stroke claims 15 million lives each year. Therefore, reliable stroke models are vital to the production of effective new therapies for the treatment of this devastating cerebral vascular accident. NEW METHOD: Middle cerebral artery occlusion (MCAo) is considered to be the most clinically relevant surgical model of ischemic stroke, in which a variety of methods may be employed to block the MCA (the most common being through insertion of a monofilament). In this study, we have compared two different approaches that are currently used arbitrarily in various laboratories worldwide: one involving insertion of a monofilament via the common carotid artery (Koizumi et al.) and one via the external carotid artery (Longa et al.). RESULTS AND COMPARISONS WITH EXISTING METHODS: We assessed various parameters, including: mortality rates, neurological scores, inflammation levels, cellular trafficking (using intravital microscopy) and infarct volumes in mice after using each of the two approaches. We found that the Longa method produced a greater, and robust, inflammatory response, versus the Koizumi method. CONCLUSIONS: In conclusion, we suggest that the Longa method is superior for the study of both short and long-term outcomes of ischemic stroke. These results have considerable implications on stroke model selection for researchers.


Assuntos
Infarto da Artéria Cerebral Média/cirurgia , Acidente Vascular Cerebral/cirurgia , Procedimentos Cirúrgicos Vasculares/métodos , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/etiologia , Procedimentos Cirúrgicos Vasculares/instrumentação
10.
FASEB J ; 29(5): 2161-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690650

RESUMO

Ischemia/reperfusion (I/R) injury following stroke can worsen patient outcome through excess inflammation. This study investigated the pharmacologic potential of targeting an endogenous anti-inflammatory circuit via formyl peptide receptor (FPR) 2/lipoxin receptor (ALX) (Fpr2/3 in mouse) in global cerebral I/R. Mice (C57BL/6 and Fpr2/3(-/-)) were subjected to bilateral common carotid artery occlusion, followed by reperfusion and treatment with FPR agonists: AnxA1Ac2-26 [Annexin A1 mimetic peptide (Ac-AMVSEFLKQAWFIENEEQEYVQTVK), 2.5 µg/kg] and 15-epimer-lipoxin A4 (15-epi-LXA4; FPR2/ALX specific, 12.5 and 100 ng/kg). Leukocyte-endothelial (L-E) interactions in the cerebral microvasculature were then quantified in vivo using intravital fluorescence microscopy. 15-epi-LXA4 administration at the start of reperfusion reduced L-E interactions after 40 min (which was sustained at 2 h with high-dose 15-epi-LXA4) to levels seen in sham-operated animals. AnxA1Ac2-26 treatment decreased leukocyte adhesion at 40 min and all L-E interactions at 2 h (up to 95%). Combined treatment with AnxA1Ac2-26 plus FPR antagonists t-Boc-FLFLF (250 ng/kg) or WRW4 (FPR2/ALX selective, 1.4 µg/kg) abrogated the effects of AnxA1Ac2-26 fully at 40 min. Antagonists were less effective at 2 h, which we demonstrate is likely because of their impact on early L-E interactions. Our findings indicate that FPR2/ALX activity elicits considerable control over vascular inflammatory responses during cerebral I/R and, therefore, provide evidence that targeting FPR2/ALX may be beneficial for patients who suffered from stroke.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Leucócitos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores de Formil Peptídeo/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Anexina A1/metabolismo , Western Blotting , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/prevenção & controle , Adesão Celular , Células Cultivadas , Endotélio Vascular/citologia , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Inflamação/patologia , Inflamação/prevenção & controle , Leucócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Microvasos/metabolismo , Microvasos/patologia , Neutrófilos/citologia , Neutrófilos/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
11.
Br J Pharmacol ; 169(3): 539-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22897118

RESUMO

BACKGROUND AND PURPOSE: Gender differences in inflammation are well described, with females often showing more robust, oestrogen-associated responses. Here, we investigated the influence of gender, oestrogen and the anti-inflammatory protein annexin A1 (AnxA1) on lipopolysaccharide (LPS)-induced leukocyte-endothelial cell interactions in murine cerebral and mesenteric microvascular beds. EXPERIMENTAL APPROACH: Intravital microscopy was used to visualize and quantify the effects of LPS (10 µg·per mouse i.p.) on leukocyte-endothelial interactions in male and female wild-type (WT) mice. The effects of ovariectomy ± oestrogen replacement were examined in WT and AnxA1-null (AnxA1(-/-) ) female mice. KEY RESULTS: LPS increased leukocyte adherence in the cerebral and mesenteric beds of both male and female WT mice; females showed exacerbated responses in the brain versus males, but not the mesentery. Ovariectomy further enhanced LPS-induced adhesion in the brain but not the mesentery; its effects were reversed by oestrogen treatment. OVX AnxA1(-/-) mice also showed exaggerated adhesive responses to LPS in the brain. However, these were unresponsive to ovariectomy and, paradoxically, responded to oestrogen with a pronounced increase in basal and LPS-induced leukocyte adhesion in the cerebrovasculature. CONCLUSIONS AND IMPLICATIONS: Our data confirm the fundamental role of AnxA1 in limiting the inflammatory response in the central and peripheral microvasculature. They also (i) show that oestrogen acts via an AnxA1-dependent mechanism to protect the cerebral, but not the mesenteric, vasculature from the damaging effects of LPS and (ii) reveal a paradoxical and potentially toxic effect of the steroid in potentiating the central response to LPS in the absence of AnxA1.


Assuntos
Anexina A1/metabolismo , Córtex Cerebral/metabolismo , Encefalite/metabolismo , Estrogênios/metabolismo , Microvasos/metabolismo , Neurônios/metabolismo , Vasculite Sistêmica/metabolismo , Animais , Anexina A1/genética , Adesão Celular , Comunicação Celular , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/imunologia , Encefalite/tratamento farmacológico , Encefalite/imunologia , Encefalite/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Estradiol/metabolismo , Estradiol/uso terapêutico , Terapia de Reposição de Estrogênios , Estrogênios/uso terapêutico , Feminino , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Lipopolissacarídeos , Masculino , Mesentério/irrigação sanguínea , Mesentério/imunologia , Mesentério/metabolismo , Mesentério/patologia , Camundongos , Camundongos Knockout , Microvasos/efeitos dos fármacos , Microvasos/imunologia , Microvasos/patologia , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Ovariectomia/efeitos adversos , Caracteres Sexuais , Vasculite Sistêmica/tratamento farmacológico , Vasculite Sistêmica/imunologia , Vasculite Sistêmica/patologia
12.
Curr Opin Pharmacol ; 12(5): 601-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22981814

RESUMO

Inflammation is the body's way of combating invading pathogens or noxious stimuli. Under normal conditions, the complex host response of rubor, dolor, calor, tumor, and functio laesa is essential for survival and the return to homeostasis. However, unregulated inflammation is all too often observed in diseases such as rheumatoid arthritis, stroke, and cancer. The host inflammatory response is governed by a number of tightly regulated processes that enable cellular trafficking to occur at the sites of damage to ultimately ensure the resolution of inflammation. Intravital microscopy (IVM) provides quantitative, qualitative, and dynamic insights into cell biology and these cellular interactions. This review highlights the pros and cons of this specialized technique and how it has evolved to help understand the physiology and pathophysiology of inflammatory events in a number of different disease states, leading to a number of potential therapeutic targets for drug discovery.


Assuntos
Comunicação Celular/fisiologia , Inflamação/patologia , Microscopia de Fluorescência/métodos , Animais , Comunicação Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Inflamação/tratamento farmacológico
13.
FASEB J ; 26(6): 2239-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426119

RESUMO

Substantial developments in the field of stem cell research point toward novel therapies for the treatment of diseases such as stroke. This review covers the establishment of tissue damage in stroke and the status of current therapies. We evaluate stem cell therapy with respect to other treatments, including clinical, preclinical, and failed, and provide a comprehensive account of stem cell clinical trials for stroke therapy currently underway. Finally, we describe mechanisms through which stem cells improve outcome in experimental stroke as well as potential pitfalls this basic research has identified.


Assuntos
Acidente Vascular Cerebral/terapia , Animais , Ensaios Clínicos Fase I como Assunto , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais , Neurogênese , Traumatismo por Reperfusão/fisiopatologia , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/uso terapêutico
14.
J Pathol ; 227(2): 136-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22322968

RESUMO

High-grade serous ovarian cancer (HGSC) disseminates early and extensively throughout the peritoneal space, causing multiple lesions that are a major clinical problem. The aim of this study was to investigate the cellular composition of peritoneal tumour deposits in patient biopsies and their evolution in mouse models using immunohistochemistry, intravital microscopy, confocal microscopy, and 3D modelling. Tumour deposits from the omentum of HGSC patients contained a prominent leukocyte infiltrate of CD3(+) T cells and CD68(+) macrophages, with occasional neutrophils. Alpha-smooth muscle actin(+) (α-SMA(+) ) pericytes and/or fibroblasts surrounded these well-vascularized tumour deposits. Using the murine bowel mesentery as an accessible mouse peritoneal tissue that could be easily imaged, and two different transplantable models, we found multiple microscopic tumour deposits after i.p. injection of malignant cells. Attachment to the peritoneal surface was rapid (6-48 h) with an extensive CD45(+) leukocyte infiltrate visible by 48 h. This infiltrate persisted until end point and in the syngeneic murine ID8 model, it primarily consisted of CD3(+) T lymphocytes and CD68(+) macrophages with α-SMA(+) cells also involved from the earliest stages. A majority of tumour deposits developed above existing mesenteric blood vessels, but in avascular spaces new blood vessels tracked towards the tumour deposits by 2-3 weeks in the IGROV-1 xenografts and 6 weeks in the ID8 syngeneic model; a vigorous convoluted blood supply was established by end point. Inhibition of tumour cell cytokine production by stable expression of shRNA to CXCR4 in IGROV-1 cells did not influence the attachment of cells to the mesentery but delayed neovascularization and reduced tumour deposit size. We conclude that the multiple peritoneal tumour deposits found in HGSC patients can be modelled in the mouse. The techniques described here may be useful for assessing treatments that target the disseminated stage of this disease.


Assuntos
Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Microambiente Tumoral , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biópsia , Complexo CD3/metabolismo , Antígeno CD48 , Linhagem Celular Tumoral , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Imuno-Histoquímica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Microscopia Confocal , Gradação de Tumores , Invasividade Neoplásica , Neovascularização Patológica/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Pericitos/metabolismo , Pericitos/patologia , Neoplasias Peritoneais/irrigação sanguínea , Neoplasias Peritoneais/imunologia , Neoplasias Peritoneais/metabolismo , Interferência de RNA , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Linfócitos T/imunologia , Linfócitos T/patologia , Fatores de Tempo , Transfecção
15.
Blood ; 117(15): 4125-33, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21304105

RESUMO

The microvasculature assumes an inflammatory and procoagulant state in a variety of different diseases, including sickle cell disease (SCD), which may contribute to the high incidence of ischemic stroke in these patients. This study provides evidence for accelerated thrombus formation in arterioles and venules in the cerebral vasculature of mice that express hemoglobin-S (ß(s) mice). Enhanced microvascular thrombosis in ß(s) mice was blunted by immunologic or genetic interventions that target tissue factor, endothelial protein C receptor, activated protein C, or thrombin. Platelets from ß(s) mice also exhibited enhanced aggregation velocity after stimulation with thrombin but not ADP. Neutropenia also protected against the enhanced thrombosis response in ß(s) mice. These results indicate that the cerebral microvasculature is rendered vulnerable to thrombus formation in ß(s) mice via a neutrophil-dependent mechanism that is associated with an increased formation of and enhanced platelet sensitivity to thrombin.


Assuntos
Anemia Falciforme , Artérias Cerebrais/metabolismo , Hemoglobina Falciforme/metabolismo , Trombose Intracraniana , Microcirculação/fisiologia , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Animais , Plaquetas/metabolismo , Transplante de Medula Óssea , Modelos Animais de Doenças , Hemoglobina Falciforme/genética , Trombose Intracraniana/etiologia , Trombose Intracraniana/genética , Trombose Intracraniana/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Mutantes , Neutrófilos/metabolismo , Agregação Plaquetária/fisiologia , Proteína C/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo
16.
Trends Pharmacol Sci ; 32(2): 90-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21185610

RESUMO

The melanocortin receptors are a subfamily of G-protein-coupled, rhodopsin-like receptors that are rapidly being acknowledged as an extremely promising target for pharmacological intervention in a variety of different inflammatory pathologies, including stroke. Stroke continues to be a leading cause of death worldwide, with risk factors including smoking, diabetes, hypertension and obesity. The pathophysiology of stroke is highly complex: reintroduction of blood flow to the infarcted brain region is paramount in limiting ischaemic damage caused by stroke, yet a concomitant inflammatory response can compound tissue damage. The possibilities of pro-resolving treatments that target this inflammatory response have only recently begun to be explored. This review discusses the endogenous roles of the melanocortin system in reducing characterized aspects of inflammation, and how these, together with potent neuroprotective actions, suggest its potential as a therapeutic target in stroke.


Assuntos
Terapia de Alvo Molecular , Receptores de Melanocortina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Humanos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
17.
FASEB J ; 22(12): 4228-38, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18757499

RESUMO

The existence of anti-inflammatory circuits centered on melanocortin receptors (MCRs) has been supported by the inhibitory properties displayed by melanocortin peptides in models of inflammation and tissue injury. Here we addressed the pathophysiological effect that one MCR, MCR type 3 (MC3R), might have on vascular inflammation. After occlusion (35 min) and reopening of the superior mesenteric artery, MC3R-null mice displayed a higher degree of plasma extravasation (45 min postreperfusion) and cell adhesion and emigration (90 min postreperfusion). These cellular alterations were complemented by higher expression of mesenteric tissue CCL2 and CXCL1 (mRNA and protein) and myeloperoxydase, as compared with wild-type animals. MC1R and MC3R mRNA and protein were both expressed in the inflamed mesenteric tissue; however, no changes in vascular responses were observed in a mouse colony bearing an inactive MC1R. Pharmacological treatment of animals with a selective MC3R agonist ([D-Trp(8)]-gamma-melanocyte-stimulating hormone; 10 microg i.v.) produced marked attenuation of cell adhesion, emigration, and chemokine generation; such effects were absent in MC3R-null mice. These new data reveal the existence of a tonic inhibitory signal provided by MC3R in the mesenteric microcirculation of the mouse, acting to down-regulate cell trafficking and local mediator generation.


Assuntos
Inflamação/fisiopatologia , Mesentério/irrigação sanguínea , Microcirculação/fisiologia , Receptor Tipo 3 de Melanocortina/deficiência , Traumatismo por Reperfusão/fisiopatologia , Animais , Antígeno CD11b/biossíntese , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/biossíntese , Quimiocina CXCL1/biossíntese , Regulação para Baixo , Mutação da Fase de Leitura , Mediadores da Inflamação/fisiologia , Selectina L/biossíntese , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Mesentério/metabolismo , Camundongos , Fenótipo , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/genética
18.
FASEB J ; 21(8): 1751-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17317721

RESUMO

The purpose of this study was to investigate the role of the homeostatic antiinflammatory axis centered on annexin 1 (AnxA1) in cerebral microvascular dysfunction and tissue injury associated with middle cerebral artery (MCA) occlusion and reperfusion. Intravital fluorescence microscopy was used to visualize the mouse cerebral microcirculation: AnxA1 null mice exhibited more white blood cell adhesion in cerebral venules than their wild-type counterparts, and this was accompanied by a larger cerebral infarct vol and worse neurological score. All parameters were rescued by delivery of human recombinant AnxA1. To further explore these findings using pharmacological tools, the effect of a short AnxA1 peptidomimetic was tested. When given during the reperfusion phase, peptide Ac2-26 produced similar cerebroprotection, which was associated with a marked attenuation of cell adhesion and markers of inflammation as measured in tissue homogenates. The pharmacological effects of peptide Ac2-26 occurred via receptors of the formyl-peptide receptor (FPR) family, most likely FPR-rs2, as deduced by displacement assays with transfected cells and in vivo experiments with transgenic mice and receptor antagonists. Our findings indicate that the endogenous antiinflammatory circuit centered on AnxA1 produces significant cerebral protection, and that these properties might have therapeutic potential for stroke treatment.


Assuntos
Anexina A1/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Animais , Anexina A1/uso terapêutico , Encéfalo/irrigação sanguínea , Homeostase , Humanos , Infarto da Artéria Cerebral Média/prevenção & controle , Inflamação , Camundongos , Camundongos Knockout , Microcirculação/efeitos dos fármacos , Microcirculação/fisiopatologia , Peptídeos/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia
19.
Stem Cells ; 25(5): 1286-97, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17255524

RESUMO

We showed previously that primary keratinocytes selected for low desmoglein 3 (Dsg3) expression levels exhibited increased colony-forming efficiency and heightened proliferative potential relative to cells with higher Dsg3 expression levels, characteristics consistent with a more "stem/progenitor cell-like" phenotype. Here, we have confirmed that Dsg3(dim) cells derived from cultured primary human adult keratinocytes have comparability with alpha(6)(bri)/CD71(dim) stem cells in terms of colony-forming efficiency. Moreover, these Dsg3(dim) cells exhibit increased reconstituting ability in in vitro organotypic culture on de-epidermalized dermis (DED); they are small, actively cycling cells, and they express elevated levels of various p63 isoforms. In parallel, using the two immortalized keratinocyte cell lines HaCaT and NTERT, we obtained essentially similar though occasionally different findings. Thus, reduced colony-forming efficiency by Dsg3(bri) cells consistently was observed in both cell lines even though the cell cycle profile and levels of p63 isoforms in the bri and dim populations differed between these two cell lines. Dsg3(dim) cells from both immortalized lines produced thicker and better ordered hierarchical structural organization of reconstituted epidermis relative to Dsg3(bri) and sorted control cells. Dsg3(dim) HaCaT cells also show sebocyte-like differentiation in the basal compartment of skin reconstituted after a 4-week organotypic culture. No differences in percentages of side population cells (also a putative marker of stem cells) were detected between Dsg3(dim) and Dsg3(bri) populations. Taken together our data indicate that Dsg3(dim) populations from primary human adult keratinocytes and long-term established keratinocyte lines possess certain stem/progenitor cell-like properties, although the side population characteristic is not one of these features. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Desmogleína 3/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Células-Tronco/citologia , Células 3T3 , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Ciclo Celular , Linhagem Celular , Linhagem Celular Transformada , Núcleo Celular/metabolismo , Proliferação de Células , Tamanho Celular , Ensaio de Unidades Formadoras de Colônias , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desmossomos/metabolismo , Epitélio/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores da Transferrina/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
Mol Pharmacol ; 70(6): 1850-5, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16959942

RESUMO

Two melanocortin receptors (MC1 and MC3R) have been identified as main transducers of the anti-inflammatory effects of natural and synthetic melanocortins. In this study, we have taken advantage of the recent description of the selective MC3R agonist [d-Trp(8)]-gamma-melanocyte-stimulating hormone (MSH) and of the recessive yellow (e/e) mouse, bearing a nonfunctional MC1R, thereby incrementing our knowledge on this topic. Culturing peritoneal macrophages of recessive yellow (e/e) mice with [d-Trp(8)]-gamma-MSH led to accumulation of cAMP, indicating MC3R receptor functionality: this effect was blocked by a neutralizing antibody against MC3R. Likewise, release of the chemokine KC by urate crystals was attenuated by [d-Trp(8)]-gamma-MSH, and this effect was prevented by synthetic [Ac-Nle(4)-c[Asp(5)-2'-Nal(7),Lys(10)]alpha-MSH(4-10)-NH(2) (SHU9119)] and natural [agouti-related protein (AGRP)] MC3R antagonists but not by the MC4R antagonist Ac-Cys-Nle-Arg-His-d-2-Nal-Arg-Trp-Cys-NH(2) (HS024). Systemic treatment of mice with [d-Trp(8)]-gamma-MSH inhibited KC release and polymorphonuclear cell accumulation elicited by urate crystals in the murine peritoneal cavity. SHU9119 and AGRP prevented the inhibitory actions of [d-Trp(8)]-gamma-MSH, whereas HS024 was inactive. We also demonstrate here that [d-Trp(8)]-gamma-MSH displays a dual mechanism of action by inducing the anti-inflammatory protein heme-oxygenase 1 (HO-1). Treatment with the HO-1 inhibitor zinc protoporphyrin IX exacerbated the inflammatory response elicited by urate crystals and abrogated the anti-inflammatory effects of [d-Trp(8)]-gamma-MSH. In conclusion, these data support the development of the selective MC3R agonist [d-Trp(8)]-gamma-MSH for the treatment of inflammatory pathologies, based on a dual mechanism of cytokine/chemokine inhibition and induction of the anti-inflammatory protein HO-1.


Assuntos
Anti-Inflamatórios/farmacologia , Receptor Tipo 1 de Melanocortina/genética , Triptofano/química , gama-MSH/farmacologia , Animais , Western Blotting , Células Cultivadas , AMP Cíclico/metabolismo , Indução Enzimática , Ensaio de Imunoadsorção Enzimática , Heme Oxigenase (Desciclizante)/biossíntese , Interleucina-1beta/metabolismo , Ativação de Macrófagos , Camundongos , Camundongos Mutantes , Receptor Tipo 3 de Melanocortina/biossíntese , gama-MSH/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA