Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976097

RESUMO

Acridine and its derivatives (9-chloroacridine and 9-aminoacridine) are investigated here, supported on FAU type zeolite Y, as a delivery system of anticancer agents. FTIR/Raman spectroscopy and electron microscopy revealed successful drug loading on the zeolite surface, while spectrofluorimetry was employed for drug quantification. The effects of the tested compounds on cell viability were evaluated using in vitro methylthiazol-tetrazolium (MTT) colorimetric technique against human colorectal carcinoma (cell line HCT-116) and MRC-5 fibroblasts. Zeolite structure remained unchanged during homogeneous drug impregnation with achieved drug loadings in the 18-21 mg/g range. The highest drug release, in the µM concentration range, with favourable kinetics was established for zeolite-supported 9-aminoacridine. The acridine delivery via zeolite carrier is viewed in terms of solvation energy and zeolite adsorption sites. The cytotoxic effect of supported acridines on HCT-116 cells reveals that the zeolite carrier improves toxicity, while the highest efficiency is displayed by zeolite-impregnated 9-aminoacridine. The 9-aminoacridine delivery via zeolite carrier favours healthy tissue preservation while accompanying increased toxicity toward cancer cells. Cytotoxicity results are well correlated with theoretical modelling and release study, providing promising results for applicative purposes.

2.
J Colloid Interface Sci ; 551: 184-194, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078100

RESUMO

By using methyl orange template, polypyrrole nanotubes were obtained by the oxidative polymerization of pyrrole. The nanotubes were carbonized in inert atmosphere to nitrogen-enriched carbon nanotubes. These were subsequently coated with 20 wt% of polypyrrole prepared in the absence or the presence of anionic dyes (methyl orange or Acid Blue 25). The morphology of all the samples was examined by the electron microscopies, FTIR and Raman spectroscopies. Moreover, X-ray photoelectron spectroscopy and elemental analysis were used to prove the chemical structure and the successful coating process. Electron paramagnetic resonance analysis was used to calculate the spin concentrations. Significant impact of coating method is evidenced with neat polypyrrole coating providing a two-fold capacitance increase compared to uncoated nanotubes, while coating in the presence of Acid Blue 25 decreasing it slightly. With respect to oxygen reduction reaction, coatings irreversibly transformed in the first few cycles in the presence of the products of O2 reduction, presumably hydrogen peroxide, altering the oxygen reduction mechanism. This transformation allows the tailoring of the polymeric shell, over ORR active carbonaceous core, and tuning of the catalyst selectivity and optimization of materials performance for a given application - from alkaline fuel cells to hydrogen peroxide generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA