Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Hemasphere ; 6(10): e785, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36204688

RESUMO

Infant acute lymphoblastic leukemia (ALL) with KMT2A-gene rearrangements (KMT2A-r) have few mutations and a poor prognosis. To uncover mutations that are below the detection of standard next-generation sequencing (NGS), a combination of targeted duplex sequencing and NGS was applied on 20 infants and 7 children with KMT2A-r ALL, 5 longitudinal and 6 paired relapse samples. Of identified nonsynonymous mutations, 87 had been previously implicated in cancer and targeted genes recurrently altered in KMT2A-r leukemia and included mutations in KRAS, NRAS, FLT3, TP53, PIK3CA, PAX5, PIK3R1, and PTPN11, with infants having fewer such mutations. Of identified cancer-associated mutations, 62% were below the resolution of standard NGS. Only 33 of 87 mutations exceeded 2% of cellular prevalence and most-targeted PI3K/RAS genes (31/33) and typically KRAS/NRAS. Five patients only had low-frequency PI3K/RAS mutations without a higher-frequency signaling mutation. Further, drug-resistant clones with FLT3 D835H or NRAS G13D/G12S mutations that comprised only 0.06% to 0.34% of diagnostic cells, expanded at relapse. Finally, in longitudinal samples, the relapse clone persisted as a minor subclone from diagnosis and through treatment before expanding during the last month of disease. Together, we demonstrate that infant and childhood KMT2A-r ALL harbor low-frequency cancer-associated mutations, implying a vast subclonal genetic landscape.

2.
Sci Adv ; 8(16): eabj1360, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442732

RESUMO

Treatment of acute lymphoblastic leukemia (ALL) necessitates continuous risk assessment of leukemic disease burden and infections that arise in the setting of immunosuppression. This study was performed to assess the feasibility of a hybrid capture next-generation sequencing panel to longitudinally measure molecular leukemic disease clearance and microbial species abundance in 20 pediatric patients with ALL throughout induction chemotherapy. This proof of concept helps establish a technical and conceptual framework that we anticipate will be expanded and applied to additional patients with leukemia, as well as extended to additional cancer types. Molecular monitoring can help accelerate the attainment of insights into the temporal biology of host-microbe-leukemia interactions, including how those changes correlate with and alter anticancer therapy efficacy. We also anticipate that fewer invasive bone marrow examinations will be required, as these methods improve with standardization and are validated for clinical use.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análise de Sequência de DNA
3.
Clin Exp Metastasis ; 39(1): 79-83, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807338

RESUMO

Single-cell sequencing technologies have undergone rapid development and adoption by the scientific community in the past 5 years, fueling discoveries about the etiology, pathogenesis, and treatment responsiveness of individual tumor cells within cancer ecosystems. Most of the advancements in our understanding of cancer with these new technologies have focused on basic tumor biology. However, the knowledge produced by these and other studies are beginning to provide biomarkers and drug targets for clinically-relevant subpopulations within a tumor, creating opportunities for the development of biologically-informed, clone-specific combination treatment strategies. Here we provide an overview of the development of the field of single-cell cancer sequencing and provide a roadmap for shepherding these technologies from research tools to diagnostic instruments that provide high-resolution, treatment-directing details of tumors to clinical oncologists.


Assuntos
Neoplasias , Ecossistema , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Medicina de Precisão
4.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099548

RESUMO

Improvements in whole genome amplification (WGA) would enable new types of basic and applied biomedical research, including studies of intratissue genetic diversity that require more accurate single-cell genotyping. Here, we present primary template-directed amplification (PTA), an isothermal WGA method that reproducibly captures >95% of the genomes of single cells in a more uniform and accurate manner than existing approaches, resulting in significantly improved variant calling sensitivity and precision. To illustrate the types of studies that are enabled by PTA, we developed direct measurement of environmental mutagenicity (DMEM), a tool for mapping genome-wide interactions of mutagens with single living human cells at base-pair resolution. In addition, we utilized PTA for genome-wide off-target indel and structural variant detection in cells that had undergone CRISPR-mediated genome editing, establishing the feasibility for performing single-cell evaluations of biopsies from edited tissues. The improved precision and accuracy of variant detection with PTA overcomes the current limitations of accurate WGA, which is the major obstacle to studying genetic diversity and evolution at cellular resolution.


Assuntos
Variação Genética , Genoma Humano , Técnicas de Amplificação de Ácido Nucleico , Análise de Célula Única , Moldes Genéticos , Pareamento de Bases/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Humanos , Mutagênicos/metabolismo , Polimorfismo de Nucleotídeo Único/genética
5.
Nat Cancer ; 1(3): 329-344, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32885175

RESUMO

Identification of genomic and epigenomic determinants of drug resistance provides important insights for improving cancer treatment. Using agnostic genome-wide interrogation of mRNA and miRNA expression, DNA methylation, SNPs, CNAs and SNVs/Indels in primary human acute lymphoblastic leukemia cells, we identified 463 genomic features associated with glucocorticoid resistance. Gene-level aggregation identified 118 overlapping genes, 15 of which were confirmed by genome-wide CRISPR screen. Collectively, this identified 30 of 38 (79%) known glucocorticoid-resistance genes/miRNAs and all 38 known resistance pathways, while revealing 14 genes not previously associated with glucocorticoid-resistance. Single cell RNAseq and network-based transcriptomic modelling corroborated the top previously undiscovered gene, CELSR2. Manipulation of CELSR2 recapitulated glucocorticoid resistance in human leukemia cell lines and revealed a synergistic drug combination (prednisolone and venetoclax) that mitigated resistance in mouse xenograft models. These findings illustrate the power of an integrative genomic strategy for elucidating genes and pathways conferring drug resistance in cancer cells.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Genômica , Glucocorticoides/farmacologia , Humanos , Camundongos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
6.
JAMA Oncol ; 6(4): 552-556, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855231

RESUMO

Importance: Bloodstream infection (BSI) is a common, life-threatening complication of treatment for cancer. Predicting BSI before onset of clinical symptoms would enable preemptive therapy, but there is no reliable screening test. Objective: To estimate sensitivity and specificity of plasma microbial cell-free DNA sequencing (mcfDNA-seq) for predicting BSI in patients at high risk of life-threatening infection. Design, Setting, and Participants: A prospective pilot cohort study of mcfDNA-seq for predicting BSI in pediatric patients (<25 years of age) with relapsed or refractory cancers at St Jude Children's Research Hospital, a specialist quaternary pediatric hematology-oncology referral center. Remnant clinical blood samples were collected during chemotherapy and hematopoietic cell transplantation. Samples collected during the 7 days before and at onset of BSI episodes, along with negative control samples from study participants, underwent blinded testing using a mcfDNA-seq test in a Clinical Laboratory Improvement Amendments/College of American Pathologists-approved laboratory. Main Outcomes and Measures: The primary outcomes were sensitivity of mcfDNA-seq for detecting a BSI pathogen during the 3 days before BSI onset and specificity of mcfDNA-seq in the absence of fever or infection in the preceding or subsequent 7 days. Results: Between August 9, 2017, and June 4, 2018, 47 participants (27 [57%] male; median age [IQR], 10 [5-14] years) were enrolled; 19 BSI episodes occurred in 12 participants, and predictive samples were available for 16 episodes, including 15 bacterial BSI episodes. In the 3 days before the onset of infection, predictive sensitivity of mcfDNA-seq was 75% for all BSIs (12 of 16; 95% CI, 51%-90%) and 80% (12 of 15; 95% CI, 55%-93%) for bacterial BSIs. The specificity of mcfDNA-seq, evaluated on 33 negative control samples from enrolled participants, was 82% (27 of 33; 95% CI, 66%-91%) for any bacterial or fungal organism and 91% (30 of 33; 95% CI, 76%-97%) for any common BSI pathogen, and the concentration of pathogen DNA was lower in control than predictive samples. Conclusions and Relevance: A clinically relevant pathogen can be identified by mcfDNA-seq days before the onset of BSI in a majority of episodes, potentially enabling preemptive treatment. Clinical application appears feasible pending further study. Trial Registration: ClinicalTrials.gov identifier: NCT03226158.


Assuntos
Infecções Relacionadas a Cateter/sangue , Ácidos Nucleicos Livres/sangue , Neoplasias/sangue , Sepse/sangue , Adolescente , Infecções Relacionadas a Cateter/complicações , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Neoplasias/complicações , Neoplasias/microbiologia , Neoplasias/patologia , Sepse/complicações , Sepse/microbiologia , Sepse/patologia , Análise de Sequência de DNA
7.
Nature ; 572(7767): 74-79, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341285

RESUMO

Medulloblastoma is a malignant childhood cerebellar tumour type that comprises distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. Here we used single-cell transcriptomics to investigate intra- and intertumoral heterogeneity in 25 medulloblastomas spanning all molecular subgroups. WNT, SHH and Group 3 tumours comprised subgroup-specific undifferentiated and differentiated neuronal-like malignant populations, whereas Group 4 tumours consisted exclusively of differentiated neuronal-like neoplastic cells. SHH tumours closely resembled granule neurons of varying differentiation states that correlated with patient age. Group 3 and Group 4 tumours exhibited a developmental trajectory from primitive progenitor-like to more mature neuronal-like cells, the relative proportions of which distinguished these subgroups. Cross-species transcriptomics defined distinct glutamatergic populations as putative cells-of-origin for SHH and Group 4 subtypes. Collectively, these data provide insights into the cellular and developmental states underlying subtype-specific medulloblastoma biology.


Assuntos
Genômica , Meduloblastoma/genética , Meduloblastoma/patologia , Análise de Célula Única , Transcriptoma , Adolescente , Adulto , Animais , Linhagem da Célula , Cerebelo/metabolismo , Cerebelo/patologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Lactente , Meduloblastoma/classificação , Camundongos , Neurônios/metabolismo , Neurônios/patologia
8.
BMC Med Genomics ; 12(1): 79, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151460

RESUMO

BACKGROUND: Intra-tumor heterogeneity stems from genetic, epigenetic, functional, and environmental differences among tumor cells. A major source of genetic heterogeneity comes from DNA sequence differences and/or whole chromosome and focal copy number variations (CNVs). Whole chromosome CNVs are caused by chromosomal instability (CIN) that is defined by a persistently high rate of chromosome mis-segregation. Accordingly, CIN causes constantly changing karyotypes that result in extensive cell-to-cell genetic heterogeneity. How the genetic heterogeneity caused by CIN influences gene expression in individual cells remains unknown. METHODS: We performed single-cell RNA sequencing on a chromosomally unstable glioblastoma cancer stem cell (CSC) line and a control normal, diploid neural stem cell (NSC) line to investigate the impact of CNV due to CIN on gene expression. From the gene expression data, we computationally inferred large-scale CNVs in single cells. Also, we performed copy number adjusted differential gene expression analysis between NSCs and glioblastoma CSCs to identify copy number dependent and independent differentially expressed genes. RESULTS: Here, we demonstrate that gene expression across large genomic regions scales proportionally to whole chromosome copy number in chromosomally unstable CSCs. Also, we show that the differential expression of most genes between normal NSCs and glioblastoma CSCs is largely accounted for by copy number alterations. However, we identify 269 genes whose differential expression in glioblastoma CSCs relative to normal NSCs is independent of copy number. Moreover, a gene signature derived from the subset of genes that are differential expressed independent of copy number in glioblastoma CSCs correlates with tumor grade and is prognostic for patient survival. CONCLUSIONS: These results demonstrate that CIN is directly responsible for gene expression changes and contributes to both genetic and transcriptional heterogeneity among glioblastoma CSCs. These results also demonstrate that the expression of some genes is buffered against changes in copy number, thus preserving some consistency in gene expression levels from cell-to-cell despite the continuous change in karyotype driven by CIN. Importantly, a gene signature derived from the subset of genes whose expression is buffered against copy number alterations correlates with tumor grade and is prognostic for patient survival that could facilitate patient diagnosis and treatment.


Assuntos
Instabilidade Cromossômica , Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Gradação de Tumores , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Análise de Sobrevida
9.
Nat Commun ; 9(1): 5405, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573729

RESUMO

The embryonic site of definitive hematopoietic stem cell (dHSC) origination has been debated for decades. Although an intra-embryonic origin is well supported, the yolk sac (YS) contribution to adult hematopoiesis remains controversial. The same developmental origin makes it difficult to identify specific markers that discern between an intraembryonic versus YS-origin using a lineage trace approach. Additionally, the highly migratory nature of blood cells and the inability of pre-circulatory embryonic cells (i.e., 5-7 somite pairs (sp)) to robustly engraft in transplantation, even after culture, has precluded scientists from properly answering these questions. Here we report robust, multi-lineage and serially transplantable dHSC activity from cultured 2-7sp murine embryonic explants (Em-Ex). dHSC are undetectable in 2-7sp YS explants. Additionally, the engraftment from Em-Ex is confined to an emerging CD31+CD45+c-Kit+CD41- population. In sum, our work supports a model in which the embryo, not the YS, is the major source of lifelong definitive hematopoiesis.


Assuntos
Linhagem da Célula , Embrião de Mamíferos/citologia , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Saco Vitelino/citologia , Animais , Movimento Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Cell ; 175(2): 429-441.e16, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245008

RESUMO

Targeting autophagy in cancer cells and in the tumor microenvironment are current goals of cancer therapy. However, components of canonical autophagy play roles in other biological processes, adding complexity to this goal. One such alternative function of autophagy proteins is LC3-associated phagocytosis (LAP), which functions in phagosome maturation and subsequent signaling events. Here, we show that impairment of LAP in the myeloid compartment, rather than canonical autophagy, induces control of tumor growth by tumor-associated macrophages (TAM) upon phagocytosis of dying tumor cells. Single-cell RNA sequencing (RNA-seq) analysis revealed that defects in LAP induce pro-inflammatory gene expression and trigger STING-mediated type I interferon responses in TAM. We found that the anti-tumor effects of LAP impairment require tumor-infiltrating T cells, dependent upon STING and the type I interferon response. Therefore, autophagy proteins in the myeloid cells of the tumor microenvironment contribute to immune suppression of T lymphocytes by effecting LAP.


Assuntos
Tolerância Imunológica/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fagocitose/fisiologia , Animais , Autofagia/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Tolerância Imunológica/imunologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células Mieloides/metabolismo , Fagossomos/fisiologia , Linfócitos T/metabolismo , Microambiente Tumoral/fisiologia
11.
Nature ; 555(7696): 371-376, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489755

RESUMO

Analysis of molecular aberrations across multiple cancer types, known as pan-cancer analysis, identifies commonalities and differences in key biological processes that are dysregulated in cancer cells from diverse lineages. Pan-cancer analyses have been performed for adult but not paediatric cancers, which commonly occur in developing mesodermic rather than adult epithelial tissues. Here we present a pan-cancer study of somatic alterations, including single nucleotide variants, small insertions or deletions, structural variations, copy number alterations, gene fusions and internal tandem duplications in 1,699 paediatric leukaemias and solid tumours across six histotypes, with whole-genome, whole-exome and transcriptome sequencing data processed under a uniform analytical framework. We report 142 driver genes in paediatric cancers, of which only 45% match those found in adult pan-cancer studies; copy number alterations and structural variants constituted the majority (62%) of events. Eleven genome-wide mutational signatures were identified, including one attributed to ultraviolet-light exposure in eight aneuploid leukaemias. Transcription of the mutant allele was detectable for 34% of protein-coding mutations, and 20% exhibited allele-specific expression. These data provide a comprehensive genomic architecture for paediatric cancers and emphasize the need for paediatric cancer-specific development of precision therapies.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Leucemia/genética , Mutação/genética , Neoplasias/genética , Alelos , Aneuploidia , Criança , Variações do Número de Cópias de DNA , Exoma/genética , Humanos , Mutação/efeitos da radiação , Taxa de Mutação , Oncogenes/genética , Medicina de Precisão/tendências , Raios Ultravioleta/efeitos adversos
12.
Blood ; 131(12): 1350-1359, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29284596

RESUMO

Early response to induction chemotherapy is an important prognostic factor in B-lymphoblastic leukemia (B-ALL). Here, we compare high-throughput sequencing (HTS) of IGH and TRG genes vs flow cytometry (FC) for measurable residual disease (MRD) detection at the end of induction chemotherapy in pediatric patients with newly diagnosed B-ALL. Six hundred nineteen paired pretreatment and end-of-induction bone marrow samples from Children's Oncology Group studies AALL0331 (clinicaltrials.gov #NCT00103285) (standard risk [SR]; with MRD by FC at any level) and AALL0232 (clinicaltrials.gov #NCT00075725) (high risk; with day 29 MRD <0.1% by FC) were evaluated by HTS and FC for event-free (EFS) and overall survival (OS). HTS and FC showed similar 5-year EFS and OS for MRD-positive and -negative patients using an MRD threshold of 0.01%. However, there was a high discordant rate with HTS identifying 55 (38.7%) more patients MRD positive at this threshold. These discrepant patients have worse outcomes than FC MRD-negative patients. In addition, the increased analytic sensitivity of HTS permitted identification of 19.9% of SR patients without MRD at any detectable level who had excellent 5-year EFS (98.1%) and OS (100%). The higher analytic sensitivity and lower false-negative rate of HTS improves upon FC for MRD detection in pediatric B-ALL by identifying a novel subset of patients at end of induction who are essentially cured using current chemotherapy and identifying MRD at 0.01% in up to one-third of patients who are missed at the same threshold by FC.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adolescente , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Masculino , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Medição de Risco , Taxa de Sobrevida
13.
BMC Genomics ; 18(1): 906, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178827

RESUMO

BACKGROUND: Single-cell genome sequencing provides high-resolution details of the clonal genomic modifications that occur during cancer initiation, progression, and ongoing evolution as patients undergo treatment. One limitation of current single-cell sequencing strategies is a suboptimal capacity to detect all classes of single-nucleotide and structural variants in the same cells. RESULTS: Here we present a new approach for determining comprehensive variant profiles of single cells using a microfluidic amplicon-based strategy to detect structural variant breakpoint sequences instead of using relative read depth to infer copy number changes. This method can reconstruct the clonal architecture and mutational history of a malignancy using all classes and sizes of somatic variants, providing more complete details of the temporal changes in mutational classes and processes that led to the development of a malignant neoplasm. Using this approach, we interrogated cells from a patient with leukemia, determining that processes producing structural variation preceded single nucleotide changes in the development of that malignancy. CONCLUSIONS: All classes and sizes of genomic variants can be efficiently detected in single cancer cells using our new method, enabling the ordering of distinct classes of mutations during tumor evolution.


Assuntos
Variação Genética , Variação Estrutural do Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Criança , Genômica/métodos , Humanos , Dispositivos Lab-On-A-Chip , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análise de Célula Única
14.
Nat Rev Genet ; 17(3): 175-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26806412

RESUMO

The field of single-cell genomics is advancing rapidly and is generating many new insights into complex biological systems, ranging from the diversity of microbial ecosystems to the genomics of human cancer. In this Review, we provide an overview of the current state of the field of single-cell genome sequencing. First, we focus on the technical challenges of making measurements that start from a single molecule of DNA, and then explore how some of these recent methodological advancements have enabled the discovery of unexpected new biology. Areas highlighted include the application of single-cell genomics to interrogate microbial dark matter and to evaluate the pathogenic roles of genetic mosaicism in multicellular organisms, with a focus on cancer. We then attempt to predict advances we expect to see in the next few years.


Assuntos
Genoma/genética , Genômica , Neoplasias/genética , Análise de Sequência de DNA/métodos , Bactérias/genética , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mosaicismo , Reação em Cadeia da Polimerase/métodos , Análise de Célula Única
15.
Proc Natl Acad Sci U S A ; 111(50): 17947-52, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25425670

RESUMO

Many cancers have substantial genomic heterogeneity within a given tumor, and to fully understand that diversity requires the ability to perform single cell analysis. We performed targeted sequencing of a panel of single nucleotide variants (SNVs), deletions, and IgH sequences in 1,479 single tumor cells from six acute lymphoblastic leukemia (ALL) patients. By accurately segregating groups of cooccurring mutations into distinct clonal populations, we identified codominant clones in the majority of patients. Evaluation of intraclonal mutation patterns identified clone-specific punctuated cytosine mutagenesis events, showed that most structural variants are acquired before SNVs, determined that KRAS mutations occur late in disease development but are not sufficient for clonal dominance, and identified clones within the same patient that are arrested at varied stages in B-cell development. Taken together, these data order the sequence of genetic events that underlie childhood ALL and provide a framework for understanding the development of the disease at single-cell resolution.


Assuntos
Variação Genética , Genômica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análise de Célula Única/métodos , Sequência de Bases , Criança , Células Clonais/fisiologia , Análise Mutacional de DNA/métodos , Exoma/genética , Humanos , Técnicas Analíticas Microfluídicas , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
16.
Blood ; 120(22): 4407-17, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22932801

RESUMO

The ability to distinguish clonal B-cell populations based on the sequence of their rearranged immunoglobulin heavy chain (IgH) locus is an important tool for diagnosing B-cell neoplasms and monitoring treatment response. Leukemic precursor B cells may continue to undergo recombination of the IgH gene after malignant transformation; however, the magnitude of evolution at the IgH locus is currently unknown. We used next-generation sequencing to characterize the repertoire of IgH sequences in diagnostic samples of 51 children with B precursor acute lymphoblastic leukemia (B-ALL). We identified clonal IgH rearrangements in 43 of 51 (84%) cases and found that the number of evolved IgH sequences per patient ranged dramatically from 0 to 4024. We demonstrate that the evolved IgH sequences are not the result of amplification artifacts and are unique to leukemic precursor B cells. In addition, the evolution often follows an allelic exclusion pattern, where only 1 of 2 rearranged IgH loci exhibit ongoing recombination. Thus, precursor B-cell leukemias maintain evolution at the IgH locus at levels that were previously underappreciated. This finding sheds light on the mechanisms associated with leukemic clonal evolution and may fundamentally change approaches for monitoring minimal residual disease burden.


Assuntos
Evolução Clonal/genética , Genes de Cadeia Pesada de Imunoglobulina/genética , Loci Gênicos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Fatores Etários , Algoritmos , Medula Óssea/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Evolução Clonal/fisiologia , Análise Mutacional de DNA , Loci Gênicos/genética , Humanos , Lactente , Recém-Nascido , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Recidiva , Estudos de Validação como Assunto
17.
PLoS One ; 7(2): e30733, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319583

RESUMO

Most human pre-mRNAs are spliced into linear molecules that retain the exon order defined by the genomic sequence. By deep sequencing of RNA from a variety of normal and malignant human cells, we found RNA transcripts from many human genes in which the exons were arranged in a non-canonical order. Statistical estimates and biochemical assays provided strong evidence that a substantial fraction of the spliced transcripts from hundreds of genes are circular RNAs. Our results suggest that a non-canonical mode of RNA splicing, resulting in a circular RNA isoform, is a general feature of the gene expression program in human cells.


Assuntos
Expressão Gênica , Precursores de RNA/genética , Splicing de RNA , RNA/genética , Sequência de Bases , Éxons , Humanos , Isoformas de Proteínas , RNA Circular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA