Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 125788, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838512

RESUMO

Aflatoxin B1-contaminated feeds and foods induce various health problems in domesticated animals and humans, including tumor development and hepatotoxicity. Aflatoxin B1 also has embryotoxic effects in different livestock species and humans. However, it is difficult to distinguish between the indirect, maternally-mediated toxic effects and the direct embryotoxicity of aflatoxin B1 in mammals. In the present study, we investigated the aflatoxin B1-induced direct embryotoxic effects in a zebrafish embryo model system combining toxicological, transcriptomic, immunological, and biochemical approaches. Embryonic exposure to aflatoxin B1 induced significant changes at the transcriptome level resulting in elevated expression of inflammatory gene network and repression of lipid metabolism and gastrointestinal tract development-related gene sets. According to the gene expression changes, massive neutrophil granulocyte influx, elevated nitric oxide production, and yolk lipid accumulation were observed in the abdominal region of aflatoxin B1-exposed larvae. In parallel, aflatoxin B1-induced defective gastrointestinal tract development and reduced L-arginine level were found in our model system. Our results revealed the complex direct embryotoxic effects of aflatoxin B1, including inhibited lipid utilization, defective intestinal development, and inflammation.


Assuntos
Aflatoxina B1 , Peixe-Zebra , Aflatoxina B1/toxicidade , Animais , Trato Gastrointestinal , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Mobilização Lipídica , Transcriptoma , Peixe-Zebra/genética
2.
Chemosphere ; 263: 128097, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297093

RESUMO

Imatinib mesylate (IM) is an anticancer drug that belongs to tyrosine kinase inhibitors. We report the results of the first investigation of the chronic exposure of zebrafish (Danio rerio) to IM. The exposure to IM (0.01, 1 and 100 µg/L) was initiated in adult fish and continued through hatching and the offspring generation for seven months. In addition to standard toxicological endpoints, induction of genotoxic effects and whole-genome transcriptome of liver samples of offspring generation of zebrafish were analysed. Exposure to IM did not affect the survival and growth of zebrafish, did not cause any histopathological changes, but it induced a marginal increase in the chromosomal damage in blood cells. The whole-genome transcriptome analyses demonstrated dose-dependent increase in the number of differentially expressed genes with a significantly higher number of deregulated genes in female fish compared to male. Differentially expressed genes included genes involved in response to DNA damage, cell cycle control and regulation of circadian rhythm. Based on the low genotoxic activity and the pattern of the changes in DNA damage responsive genes we consider that at current environmental exposure levels, IM represents low risk for genotoxic effects in aquatic organisms. Exposure to IM also induced deregulation of the expression of genes associated with steroidogenesis and hormone metabolism and function, which indicates hormone-disrupting activity of IM that has not been studied so far. The study provide new information on the potential consequences of chronic exposure to the residues of tyrosine kinase inhibitors, which remain to be further explored.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Feminino , Mesilato de Imatinib/toxicidade , Estágios do Ciclo de Vida , Masculino , Transcriptoma , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
3.
Aquat Toxicol ; 208: 157-167, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30677711

RESUMO

Environmental estrogens are a serious concern worldwide due to their ubiquity and adverse ecotoxicological and health effects. Chemical structure of these substances is highly diverse, therefore estrogenicity cannot be predicted on the basis of molecular structure. Furthermore, estimation of estrogenicity of environmental samples based on chemical analytics of suspects is difficult given the complex interaction of chemicals and the impact on estrogenicity. The full estrogenic impact of an environmental sample can thus only be revealed by a series of sensitive in vitro and in vivo ecotoxicological tests. Herein we describe a vitellogenin reporter transgenic zebrafish line (Tg(vtg1:mCherry)) that enables the detection of estrogenicity in the environmentally relevant, low concentration ranges in embryonic tests that are in accordance with 3Rs and relevant animal welfare regulations. The transgene construct used for the development of Tg(vtg1:mCherry) carried a long (3.4 kbp) natural vitellogenin-1 promoter sequence with a high number of ERE sites. A test protocol was developed based on our finding that the endogenous vitellogenin and the reporter show similar spatial expression pattern and both endogenous and vitellogenin reporter is only produced in the left hepatic lobe of 5 dpf zebrafish embryos. Seven generations of Tg(vtg1:mCherry) have been established, and the estrogen responsiveness was tested with different estrogenic substances and wastewater samples. Embryos were exposed from 3 to 5 days post fertilization (dpf). Fluorescence in embryos could be detected upon treatment with 17-ß-estradiol from a concentration of 100 ng/L, 17-α-ethynilestradiol from 1 ng/L, zearalenone from 100 ng/L and bisphenol-A from 1 mg/L. In the adult stage transgene activity appeared to be more sensitive to estrogen treatment, with detectable transgene activity from 5 ng/L 17-ß-estradiol concentration. The transgenic line Tg(vtg1:mCherry) was also suitable for the direct measurement of estrogenicity in wastewater samples without sample extraction. The detection of estrogenic activity using the reporter line was confirmed by the bioluminescent yeast estrogen screen.


Assuntos
Estrogênios/análise , Fígado/metabolismo , Vitelogeninas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Embrião não Mamífero/metabolismo , Estradiol/metabolismo , Fluorescência , Heterozigoto , Homozigoto , Fígado/efeitos dos fármacos , Masculino , Elementos de Resposta/genética , Transgenes , Águas Residuárias/química , Poluentes Químicos da Água/análise , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA