Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Transl Med ; 21(1): 736, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853459

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most deadly and fourth most diagnosed cancer worldwide. Despite the progress in early diagnosis and advanced therapeutic options, CRC shows a poor prognosis with a 5 year survival rate of ~ 45%. PRDM2/RIZ, a member of PR/SET domain family (PRDM), expresses two main molecular variants, the PR-plus isoform (RIZ1) and the PR-minus (RIZ2). The imbalance in their expression levels in favor of RIZ2 is observed in many cancer types. The full length RIZ1 has been extensively investigated in several cancers where it acts as a tumor suppressor, whereas few studies have explored the RIZ2 oncogenic properties. PRDM2 is often target of frameshift mutations and aberrant DNA methylation in CRC. However, little is known about its role in CRC. METHODS: We combined in-silico investigation of The Cancer Genome Atlas (TCGA) CRC datasets, cellular and molecular assays, transcriptome sequencing and functional annotation analysis to assess the role of RIZ2 in human CRC. RESULTS: Our in-silico analysis on TCGA datasets confirmed that PRDM2 gene is frequently mutated and transcriptionally deregulated in CRC and revealed that a RIZ2 increase is highly correlated with a significant RIZ1 downregulation. Then, we assayed several CRC cell lines by qRT-PCR analysis for the main PRDM2 transcripts and selected DLD1 cell line, which showed the lowest RIZ2 levels. Therefore, we overexpressed RIZ2 in these cells to mimic TCGA datasets analysis results and consequently to assess the PRDM2/RIZ2 role in CRC. Data from RNA-seq disclosed that RIZ2 overexpression induced profound changes in CRC cell transcriptome via EGF pathway deregulation, suggesting that RIZ2 is involved in the EGF autocrine regulation of DLD1 cell behavior. Noteworthy, the forced RIZ2 expression increased cell viability, growth, colony formation, migration and organoid formation. These effects could be mediated by the release of high EGF levels by RIZ2 overexpressing DLD1 cells. CONCLUSIONS: Our findings add novel insights on the putative RIZ2 tumor-promoting functions in CRC, although additional efforts are warranted to define the underlying molecular mechanism.


Assuntos
Neoplasias Colorretais , Fator de Crescimento Epidérmico , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Receptores ErbB , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Células Tumorais Cultivadas
2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686233

RESUMO

The spread of breast cancer to distant sites is the major cause of death in breast cancer patients. Increasing evidence supports the role of the tumor microenvironment (TME) in breast cancers, and its pathologic assessment has become a diagnostic and therapeutic tool. In the TME, a bidirectional interplay between tumor and stromal cells occurs, both at the primary and metastatic site. Hundreds of molecules, including cytokines, chemokines, and growth factors, contribute to this fine interaction to promote tumor spreading. Here, we investigated the effects of Rimonabant and Cannabidiol, known for their antitumor activity, on reprogramming the breast TME. Both compounds directly affect the activity of several pathways involved in breast cancer progression. To mimic tumor-stroma interactions during breast-to-lung metastasis, we investigated the effect of the compounds on growth factor secretion from metastatic breast cancer cells and normal and activated lung fibroblasts. In this setting, we demonstrated the anti-metastatic potential of the two compounds, and the membrane array analyses highlighted their ability to alter the release of factors involved in the autocrine and paracrine regulation of tumor proliferation, angiogenesis, and immune reprogramming. The results enforce the antitumor potential of Rimonabant and Cannabidiol, providing a novel potential tool for breast cancer TME management.


Assuntos
Neoplasias da Mama , Canabidiol , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Canabidiol/farmacologia , Rimonabanto/farmacologia , Microambiente Tumoral , Melanoma Maligno Cutâneo
3.
J Transl Med ; 21(1): 217, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964555

RESUMO

BACKGROUND: T cell activation and programming from their naïve/resting state, characterized by widespread modifications in chromatin accessibility triggering extensive changes in transcriptional programs, is orchestrated by several cytokines and transcription regulators. PRDM1 and PRDM2 encode for proteins with PR/SET and zinc finger domains that control several biological processes, including cell differentiation, through epigenetic regulation of gene expression. Different transcripts leading to main protein isoforms with (PR +) or without (PR-) the PR/SET domain have been described. Although many studies have established the critical PRDM1 role in hematopoietic cell differentiation, maintenance and/or function, the single transcript contribution has not been investigated before. Otherwise, very few evidence is currently available on PRDM2. Here, we aimed to analyze the role of PRDM1 and PRDM2 different transcripts as mediators of T lymphocyte activation. METHODS: We analyzed the transcription signature of the main variants from PRDM1 (BLIMP1a and BLIMP1b) and PRDM2 (RIZ1 and RIZ2) genes, in human T lymphocytes and Jurkat cells overexpressing PRDM2 cDNAs following activation through different signals. RESULTS: T lymphocyte activation induced an early increase of RIZ2 and RIZ1 followed by BLIMP1b increase and finally by BLIMP1a increase. The "first" and the "second" signals shifted the balance towards the PR- forms for both genes. Interestingly, the PI3K signaling pathway modulated the RIZ1/RIZ2 ratio in favor of RIZ1 while the balance versus RIZ2 was promoted by MAPK pathway. Cytokines mediating different Jak/Stat signaling pathways (third signal) early modulated the expression of PRDM1 and PRDM2 and the relationship of their different transcripts confirming the early increase of the PR- transcripts. Different responses of T cell subpopulations were also observed. Jurkat cells showed that the acute transient RIZ2 increase promoted the balancing of PRDM1 forms towards BLIMP1b. The stable forced expression of RIZ1 or RIZ2 induced a significant variation in the expression of key transcription factors involved in T lymphocyte differentiation. The BLIMP1a/b balance shifted in favor of BLIMP1a in RIZ1-overexpressing cells and of BLIMP1b in RIZ2-overexpressing cells. CONCLUSIONS: This study provides the first characterization of PRDM2 in T-lymphocyte activation/differentiation and novel insights on PRDM1 and PRDM2 transcription regulation during initial activation phases.


Assuntos
Epigênese Genética , Ativação Linfocitária , Humanos , Fosfatidilinositol 3-Quinases/genética , Fatores de Transcrição/genética , Citocinas/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Histona-Lisina N-Metiltransferase/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética
4.
Int J Cancer ; 152(12): 2464-2473, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36366852

RESUMO

The epidemic spread of obesity is nowadays recognized as a global health and economic burden, arising great interest in the scientific community. The rate of adult obesity steadily increases concomitantly with the cancer incidence. As has been comprehensively reported, obesity is included among the multiple cancer risk factors and can progressively cause and/or exacerbate certain cancer types, as colorectal and breast cancers. The term adiponcosis was forged precisely to emphasize the interconnection between obesity and cancer onset and progression. The underlying mechanisms of adiponcosis have not been fully elucidated yet, may vary on cancer type, and depend on body fat distribution. It has been proposed that insulin resistance and related chronic hyperinsulinemia, increased insulin-like growth factors production, chronic inflammation or increased bioavailability of steroid hormones could be responsible of cancer hallmarks. Additionally, it has been suggested that adipose tissue-derived hormones, cytokines and adipokines, such as leptin, adiponectin and inflammatory markers, may reflect mechanisms linked to tumorigenesis. This review summarizes the current evidence on pathways, hormones, cytokines and low-chronic inflammation subtending adiponconsis, focusing on breast and colorectal cancers. In addition, we analyzed the lifestyle interventions that could attenuate the driving forces of obesity-related cancer incidence and progression. Moreover, current targets and drugs, their pros and cons, as well as new mechanisms and targets with promising therapeutic potential in cancer are discussed. Depicting this complex interconnection will provide insights for establishing new therapeutic approaches to halt the obesity impacts and thwart cancer onset and progression.


Assuntos
Neoplasias da Mama , Obesidade , Humanos , Feminino , Obesidade/complicações , Obesidade/metabolismo , Fatores de Risco , Neoplasias da Mama/metabolismo , Citocinas/metabolismo , Tecido Adiposo/metabolismo , Inflamação/complicações
5.
Front Pharmacol ; 13: 815646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559231

RESUMO

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, and due to its unique features, its management is certainly one of the most challenging ones among all cancers. N6-isopentenyladenosine (IPA) and its analog N6-benzyladenosine (N6-BA) are modified nucleosides endowed with potent antitumor activity on different types of human cancers, including GBM. Corroborating our previous finding, we demonstrated that IPA and N6-BA affect GBM cell line proliferation by modulating the expression of the F-box WD repeat domain-containing-7 (FBXW7), a tumor suppressor with a crucial role in the turnover of many proteins, such as SREBPs and Mcl1, involved in malignant progression and chemoresistance. Luciferase assay revealed that IPA-mediated upregulation of FBXW7 translates in transcriptional inactivation of its oncogenic substrates (Myc, NFkB, or HIF-1α). Moreover, downregulating MGMT expression, IPA strongly enhances the killing effect of temozolomide (TMZ), producing a favorable sensitizing effect starting from a concentration range much lower than TMZ EC50. Through DNA methyltransferase (DNMT) activity assay, analysis of the global DNA methylation, and the histone modification profiles, we demonstrated that the modified adenosines behave similar to 5-AZA-dC, known DNMT inhibitor. Overall, our results provide new perspectives for the first time, suggesting the modified adenosines as epigenetic tools able to improve chemo- and radiotherapy efficacy in glioblastoma and potentially other cancers.

6.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885721

RESUMO

N6-Isopentenyladenosine (i6A) is a naturally occurring modified nucleoside displaying in vitro and in vivo antiproliferative and pro-apoptotic properties. In our previous studies, including an in silico inverse virtual screening, NMR experiments and in vitro enzymatic assays, we demonstrated that i6A targeted farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway and prenylation of downstream proteins, which are aberrant in several cancers. Following our interest in the anticancer effects of FPPS inhibition, we developed a panel of i6A derivatives bearing bulky aromatic moieties in the N6 position of adenosine. With the aim of clarifying molecular action of N6-benzyladenosine analogs on the FPPS enzyme inhibition and cellular toxicity and proliferation, herein we report the evaluation of the N6-benzyladenosine derivatives' (compounds 2a-m) effects on cell viability and proliferation on HCT116, DLD-1 (human) and MC38 (murine) colorectal cancer cells (CRC). We found that compounds 2, 2a and 2c showed a persistent antiproliferative effect on human CRC lines and compound 2f exerted a significant effect in impairing the prenylation of RAS and Rap-1A proteins, confirming that the antitumor activity of 2f was related to the ability to inhibit FPPS activity.


Assuntos
Adenosina/química , Antineoplásicos/química , Neoplasias Colorretais/tratamento farmacológico , Geraniltranstransferase/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Geraniltranstransferase/antagonistas & inibidores , Células HCT116 , Humanos , Ácido Mevalônico/antagonistas & inibidores , Ácido Mevalônico/metabolismo , Ácido Mevalônico/farmacologia , Camundongos , Relação Estrutura-Atividade , Interface Usuário-Computador
7.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769459

RESUMO

PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1) homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes to the early establishment of anorexigenic neuron identity and the maintenance of high expression levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a "Yin and Yang" manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-activated in several cancer types. However, little information is currently available on PRDM12 expression in cancers and its mechanism of action has not been thoroughly described. In this review, we summarize the recent findings regarding PRDM12 by focusing on four main biological processes: neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer onset and progression.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dor/metabolismo , Animais , Humanos , Neoplasias/patologia , Neurogênese/fisiologia , Dor/patologia
8.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638872

RESUMO

BACKGROUND: Vasculogenic mimicry (VM) is a functional microcirculation pattern formed by aggressive tumor cells. Thus far, no effective drugs have been developed to target VM. Glioblastoma (GBM) is the most malignant form of brain cancer and is a highly vascularized tumor. Vasculogenic mimicry represents a means whereby GBM can escape anti-angiogenic therapies. METHODS: Here, using an in vitro tube formation assay on Matrigel, we evaluated the ability of N6-isopentenyladenosine (iPA) to interfere with vasculogenic mimicry (VM). RhoA activity was assessed using a pull-down assay, while the modulation of the adherens junctions proteins was analyzed by Western blot analysis. RESULTS: We found that iPA at sublethal doses inhibited the formation of capillary-like structures suppressing cell migration and invasion of U87MG, U343MG, and U251MG cells, of patient-derived human GBM cells and GBM stem cells. iPA reduces the vascular endothelial cadherin (VE-cadherin) expression levels in a dose-dependent manner, impairs the vasculogenic mimicry network by modulation of the Src/p120-catenin pathway and inhibition of RhoA-GTPase activity. CONCLUSIONS: Taken together, our results revealed iPA as a promising novel anti-VM drug in GBM clinical therapeutics.


Assuntos
Cateninas/metabolismo , Glioblastoma/tratamento farmacológico , Isopenteniladenosina/farmacologia , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Cateninas/genética , Linhagem Celular Tumoral , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Quinases da Família src/genética
9.
Diagnostics (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069924

RESUMO

Alpha B-crystallin (CRYAB, HSPB5) belongs to the small heat shock protein (HSP) family and is highly expressed in various human cancers, suggesting a crucial role in tumor progression. However, few studies have examined CRYAB expression in colorectal cancer (CRC). In the present study, we investigated the relationship between CRYAB expression and the clinicopathological features of CRC samples. We comparatively analyzed CRYAB protein expression in 111 CRC tissues and normal adjacent colonic tissue, observing that it was significantly lower in CRC tissues than in corresponding non-cancerous tissues. Moreover, immunohistochemical analysis showed a significant correlation between CRYAB expression and high histological grade G3 (p = 0.033). In summary, our results point to its possible application as a prognostic biomarker in CRC patients.

10.
Nat Prod Res ; 35(13): 2190-2198, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31542956

RESUMO

Asteriscus graveolens (Forsk) Less. is a Saharan medicinal plant of Asteraceae family. A new acyclic sesquiterpene [7,12-dihydroxy-6,7-dihydro-5,(6) E-dehydronerolidol (3)] and sesquiterpene germacranolide lactone derivatives [9ß-hydroxy-11ß,13-dihydroparthenolide-9-O-ß-D-glucopyranoside (7) and 9α-hydroxy-11ß,13-dihydroparthenolide-9-O-ß-D-glucopyranoside (8)] along with eight known compounds were isolated from polar extracts of aerial parts. Their structures were established by the analysis of 1 D- 2 D-NMR and high-resolution mass spectrometry data. A. graveolens extracts and compounds showed a significant (P < 0.05) and concentration dependent inhibitory effect on the growth of Human Colon Carcinoma (HCT116) and Human Colorectal Adenocarcinoma (DLD1) cells with IC50 in a concentration range from 89.4 to 296.0 µg/mL for extracts and from 32.6 to 728.1 µg/mL for compounds. No cytotoxic effects was evidenced in normal Primary Human Dermal Fibroblast (HDFa) up to 0.050 mg/mL for extracts and 1.0 mg/mL for pure compounds.


Assuntos
Asteraceae/química , Sesquiterpenos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrólise , Espectroscopia de Prótons por Ressonância Magnética , Sesquiterpenos/química , Sesquiterpenos/farmacologia
11.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290321

RESUMO

The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.


Assuntos
Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias/etiologia , Neoplasias/metabolismo , Proteínas Nucleares/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Família Multigênica , Neoplasias/mortalidade , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Fatores de Transcrição/metabolismo
12.
Bioorg Chem ; 98: 103449, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057422

RESUMO

Farnesyl pyrophosphate synthase (FPPS) is a crucial enzyme for the synthesis of isoprenoids and the key target of nitrogen-containing bisphosphonates (N-BPs). N-BPs are potent and selective FPPS inhibitors that are used in the treatment of bone-related diseases, but have poor pharmacokinetic properties. Given the key role played by FPPS in many cancer-related pathways and the pharmacokinetic limits of N-BPs, hundreds of molecules have been screened to identify new FPPS inhibitors characterized by improved drug-like properties that are useful for broader therapeutic applications in solid, non-skeletal tumours. We have previously shown that N6-isopentenyladenosine (i6A) and its related compound N6-benzyladenosine (2) exert anti-glioma activity by interfering with the mevalonate pathway and inhibiting FPPS. Here, we report the design and synthesis of a panel of N6-benzyladenosine derivatives (compounds 2a-m) incorporating different chemical moieties on the benzyl ring. Compounds 2a-m show in vitro antiproliferative activity in U87MG glioma cells and, analogous to the bisphosphonate FPPS inhibitors, exhibit immunogenic properties in ex vivo γδ T cells from stimulated peripheral blood mononuclear cells (PBMCs). Using saturation transfer difference (STD) and quantitative 1H nuclear magnetic resonance (NMR) experiments, we found that 2f, the N6-benzyladenosine analogue that includes a tertbutyl moiety in the para position of the benzyl ring, is endowed with increased FPPS binding and inhibition compared to the parent compounds i6A and 2. N6-benzyladenosine derivatives, characterized by structural features that are significantly different from those of N-BPs, have been confirmed to be promising chemical scaffolds for the development of non N-BP FPPS inhibitors, exerting combined cytotoxic and immunostimulatory activities.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Ressonância Magnética Nuclear Biomolecular , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979368

RESUMO

In recent years, the endocannabinoid system has received great interest as a potential therapeutic target in numerous pathological conditions. Cannabinoids have shown an anticancer potential by modulating several pathways involved in cell growth, differentiation, migration, and angiogenesis. However, the therapeutic efficacy of cannabinoids is limited to the treatment of chemotherapy-induced symptoms or cancer pain, but their use as anticancer drugs in chemotherapeutic protocols requires further investigation. In this paper, we reviewed the role of cannabinoids in the modulation of signaling mechanisms implicated in tumor progression.


Assuntos
Antineoplásicos/farmacologia , Canabinoides/farmacologia , Movimento Celular/efeitos dos fármacos , Endocanabinoides/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Receptores de Canabinoides/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Humanos , Masculino , Neoplasias/tratamento farmacológico , Receptores de Canabinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Invest New Drugs ; 38(3): 634-649, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31240514

RESUMO

Cutaneous melanoma, the most aggressive form of skin cancer, is characterized by activating BRAF mutations. Despite the initial success of selective BRAF inhibitors, only few patients exhibited complete responses, whereas many showed disease progression. Melanoma is one of the few types of cancer in which p53 is not frequently mutated, but p53 inactivation can be indirectly achieved by a stable activation of MDM2 induced by a deletion in CDKN2A (Cyclin Dependent Kinase Inhibitor 2A) locus, encoding for p16INK4A and p14ARF, two tumor suppressor genes. In this study, we tested the efficacy of the previously synthesized tetra-substituted pyrrole derivatives, 8 g, 8 h and 8i, in melanoma cell lines, and we compared the effects of the most active of these, the 8i compound, with that exerted by Nutlin 3, a well-known inhibitor of p53-MDM2 interaction. The obtained results showed that 8i potentiates the inhibitory effect of Nutlin 3 and the combined use of 8i and Nutlin 3 triggers apoptosis and significantly impairs melanoma viability. Finally, the 8i compound reduces p53-MDM2 interaction and induces p53-HSP90 complex formation, suggesting that the observed raise in p53 transcriptional activity could be mediated by HSP90. Because the main feature of melanoma is the resistance to most chemotherapeutics, our studies suggest that the 8i tetra-substituted pyrrole derivative, restoring p53 functions and its transcriptional activities, may have potential application, at least as adjuvant, in the treatment of human melanoma.


Assuntos
Pirróis/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imidazóis/metabolismo , Melanoma , Mutação/efeitos dos fármacos , Piperazinas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Melanoma Maligno Cutâneo
15.
Front Oncol ; 10: 583533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585202

RESUMO

Positive Regulatory Domain (PRDM) gene family members commonly express two main molecular variants, the PR-plus isoform usually acting as tumor suppressor and the PR-minus one functioning as oncogene. Accordingly, PRDM2/RIZ encodes for RIZ1 (PR-plus) and RIZ2 (PR-minus). In human cancers, genetic or epigenetic modifications induce RIZ1 silencing with an expression level imbalance in favor of RIZ2 that could be relevant for tumorigenesis. Additionally, in estrogen target cells and tissues, estradiol increases RIZ2 expression level with concurrent increase of cell proliferation and survival. Several attempts to study RIZ2 function in HeLa or MCF-7 cells by its over-expression were unsuccessful. Thus, we over-expressed RIZ2 in HEK-293 cells, which are both RIZ1 and RIZ2 positive but unresponsive to estrogens. The forced RIZ2 expression increased cell viability and growth, prompted the G2-to-M phase transition and organoids formation. Accordingly, microarray analysis revealed that RIZ2 regulates several genes involved in mitosis. Consistently, RIZ silencing in both estrogen-responsive MCF-7 and -unresponsive MDA-MB-231 cells induced a reduction of cell proliferation and an increase of apoptosis rate. Our findings add novel insights on the putative RIZ2 tumor-promoting functions, although additional attempts are warranted to depict the underlying molecular mechanism.

16.
Cancers (Basel) ; 11(10)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569395

RESUMO

N6-isopentenyladenosine has been shown to exert potent in vitro antitumor activity on different human cancers, including colorectal cancer. Although some potential biochemical targets have been identified, its precise mechanism of action remains unclear. We found that N6-isopentenyladenosine affects colorectal cancer proliferation in in vitro models carrying different mutational status of FBXW7 and TP53 genes, and in HCT116 xenografts in SCID mice, by increasing the expression of the well-established tumor suppressor FBXW7, a component of the SCF-E3 ubiquitin ligase complex that promotes degradation of various oncoproteins and transcription factors, such as c-Myc, SREBP and Mcl1. Corroborating our previous studies, we identified for the first time the FBXW7/SREBP/FDPS axis as a target of the compound. Pull down of ubiquitinated proteins, immunoprecipitation and luciferase assays, reveal that through the increase of FBXW7/c-Myc binding, N6-isopentenyladenosine induces the ubiquitination of c-Myc, inhibiting its transcriptional activity. Moreover, in FBXW7- and TP53-wild type cells, N6-isopentenyladenosine strongly synergizes with 5-Fluorouracil to inhibit colon cancer growth in vitro. Our results provide novel insights into the molecular mechanism of N6-isopentenyladenosine, revealing its multi-targeting antitumor action, in vitro and in vivo. Restoring of FBXW7 tumor-suppressor represents a valid therapeutic tool, enabling N6-isopentenyladenosine as optimizable compound for patient-personalized therapies in colorectal cancer.

17.
Front Oncol ; 9: 1498, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993371

RESUMO

Glioblastoma is among the most common malignant brain tumors and has a dismal prognosis due to the poor response to therapeutic regimens such as ionizing radiation and DNA-alkylating agents. In our study, we investigated the radiosensitizing activity of the N6-isopentenyladenosine (iPA), an naturally modified adenosine harboring an isopenenyl moiety, which shows antiproliferative effects on glioblastoma cell lines. We observed that co-treatment with ionizing radiation and iPA at micromolar concentration inhibited colony formation and viability of glioblastoma cell lines but not of non-malignant human cells. The combined treatment significantly attenuated the repair of radiation-induced DNA damage by inhibiting both the expression and irradiation-induced foci formation of RAD51, a key player in the homologous recombination repair process, leading to persistent DNA damage, as reflected by an increase of γ-H2AX foci. The radiosensitizing effect relied also on the inhibition of STAT5a/b activation, which is crucial for RAD51 expression, suggesting that iPA modulates the STAT5a/b-RAD51 axis following exposure to ionizing radiation. Overall, these data suggest that iPA, by acting through RAD51 inhibition at the mechanistic level, could function as a promising radiosensitizing agent and warrants further evaluation in prospective clinical trials.

18.
Nat Prod Res ; 33(12): 1813-1818, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29430949

RESUMO

Heliotropium bacciferum (Boraginaceae) is a perennial herb, growing in the Bechar region of Algeria, where it is traditionally used for skin diseases and tonsillitis. Herein, we report the isolation and characterization of sixteen secondary metabolites from the aerial part extracts. They include a sterol (1), megastigman type nor-isoprenoids (2, 3, 4, 6, 8, 10), C-11 terpene lactones (5 and 9), and a monoterpene (7) from the chloroform extract (HB-C); monoterpene glucoside (14), and phenolic compounds (11-13, 15, 16) from the methanol one (HB-M). Their structures were elucidated by spectroscopic methods including 1D and 2D NMR experiments, and ESIMS analysis. HB-M showed a significant and concentration dependent scavenging activity in vitro against the radicals DPPH and ABTS, related to the phenol derivatives (11-13, and 15-16), and HB-C inhibited the growth of colon cancer cell lines, mainly for the presence of the antiproliferative C-11 terpene lactones (5 and 9).


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Heliotropium/química , Argélia , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Células HCT116 , Heliotropium/metabolismo , Humanos , Estrutura Molecular , Fenóis/análise , Fenóis/química , Extratos Vegetais/química , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Metabolismo Secundário , Espectrometria de Massas por Ionização por Electrospray
19.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347759

RESUMO

The PR/SET domain gene family (PRDM) encodes 19 different transcription factors that share a subtype of the SET domain [Su(var)3-9, enhancer-of-zeste and trithorax] known as the PRDF1-RIZ (PR) homology domain. This domain, with its potential methyltransferase activity, is followed by a variable number of zinc-finger motifs, which likely mediate protein⁻protein, protein⁻RNA, or protein⁻DNA interactions. Intriguingly, almost all PRDM family members express different isoforms, which likely play opposite roles in oncogenesis. Remarkably, several studies have described alterations in most of the family members in malignancies. Here, to obtain a pan-cancer overview of the genomic and transcriptomic alterations of PRDM genes, we reanalyzed the Exome- and RNA-Seq public datasets available at The Cancer Genome Atlas portal. Overall, PRDM2, PRDM3/MECOM, PRDM9, PRDM16 and ZFPM2/FOG2 were the most mutated genes with pan-cancer frequencies of protein-affecting mutations higher than 1%. Moreover, we observed heterogeneity in the mutation frequencies of these genes across tumors, with cancer types also reaching a value of about 20% of mutated samples for a specific PRDM gene. Of note, ZFPM1/FOG1 mutations occurred in 50% of adrenocortical carcinoma patients and were localized in a hotspot region. These findings, together with OncodriveCLUST results, suggest it could be putatively considered a cancer driver gene in this malignancy. Finally, transcriptome analysis from RNA-Seq data of paired samples revealed that transcription of PRDMs was significantly altered in several tumors. Specifically, PRDM12 and PRDM13 were largely overexpressed in many cancers whereas PRDM16 and ZFPM2/FOG2 were often downregulated. Some of these findings were also confirmed by real-time-PCR on primary tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Domínios PR-SET , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Transcriptoma , Bases de Dados Genéticas , Humanos , Taxa de Mutação , Fator 1 de Ligação ao Domínio I Regulador Positivo/química , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
20.
Electrophoresis ; 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29775214

RESUMO

Artichoke by-products are a suitable source of health-promoting ingredients for the production of dietary supplements and food additives. A pressurized hot water extraction (PHWE) was developed to recover caffeoylquinic acids (CQAs) and flavone glycosides (FLs) from agro-industrial artichoke by-products. The main factors influencing PHWE efficiency and CQA isomerization (temperature, numbers of cycles, modifier, and extraction time) were carefully studied and optimized by response surface design. The proposed PHWE procedure provides an exhaustive extraction of CQAs and FLs (recoveries: 93-105% and 90-105%) from artichoke external bracts and leaves of different cultivars (p > 0.05), without significant formation of artefacts generated by high temperatures. PHWE extracts showed CQA and FL levels (14-37 mg/g and 3-19 mg/g, respectively) comparable to commercial products and marked antioxidative effects (EC50 11-83 µg/mL) by cellular antioxidant activity assay in human hepatocarcinoma HepG2 cells. These results proved that PHWE is an excellent green technique to recover bioactive compounds from artichoke agro-industrial residues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA