Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Prev Cardiol ; 31(8): 1038-1047, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38374534

RESUMO

AIMS: The availability of novel lipid-lowering therapies (LLTs) has remarkably changed the clinical management of homozygous familial hypercholesterolaemia (HoFH). The impact of these advances was evaluated in a cohort of 139 HoFH patients followed in a real-world clinical setting. METHODS AND RESULTS: The clinical characteristics of 139 HoFH patients, along with information about LLTs and low-density lipoprotein cholesterol (LDL-C) levels at baseline and after a median follow-up of 5 years, were retrospectively retrieved from the records of patients enrolled in the LIPid transport disorders Italian GEnetic Network-Familial Hypercholesterolaemia (LIPIGEN-FH) Registry. The annual rates of major atherosclerotic cardiovascular events (MACE-plus) during follow-up were compared before and after baseline. Additionally, the lifelong survival free from MACE-plus was compared with that of the historical LIPIGEN HoFH cohort. At baseline, LDL-C level was 332 ± 138 mg/dL. During follow-up, the potency of LLTs was enhanced and, at the last visit, 15.8% of patients were taking quadruple therapy. Consistently, LDL-C decreased to an average value of 124 mg/dL corresponding to a 58.3% reduction (Pt < 0.001), with the lowest value (∼90 mg/dL) reached in patients receiving proprotein convertase subtilisin/kexin type 9 inhibitors and lomitapide and/or evinacumab as add-on therapies. The average annual MACE-plus rate in the 5-year follow-up was significantly lower than that observed during the 5 years before baseline visit (21.7 vs. 56.5 per 1000 patients/year; P = 0.0016). CONCLUSION: Our findings indicate that the combination of novel and conventional LLTs significantly improved LDL-C control with a signal of better cardiovascular prognosis in HoFH patients. Overall, these results advocate the use of intensive, multidrug LLTs to effectively manage HoFH.


Contemporary real-world data from the Italian cohort of patients affected by homozygous familial hypercholesterolaemia demonstrated that the addition of novel, low-density lipoprotein receptor (LDLR)-independent medications to conventional therapies allowed the achievement of unprecedented low-density lipoprotein cholesterol (LDL-C) values with a trend towards a reduction of cardiovascular risk.


Assuntos
LDL-Colesterol , Hiperlipoproteinemia Tipo II , Sistema de Registros , Humanos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Masculino , Feminino , Itália/epidemiologia , LDL-Colesterol/sangue , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Homozigoto , Resultado do Tratamento , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/epidemiologia , Medição de Risco , Fatores de Tempo , Biomarcadores/sangue , Fatores de Risco , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Predisposição Genética para Doença , Inibidores de PCSK9/uso terapêutico , Hipolipemiantes/uso terapêutico
2.
Eur J Intern Med ; 123: 65-71, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38245461

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a genetically determined monogenic disorder of predominantly autosomal dominant inheritance. A number of studies on differences in the genetic profile of patients with FH have demonstrated the importance of a more substantive evaluation of genetic features. The aim of this study was to evaluate the genetic profile of patients with clinical FH among Italian and Russian patients. METHODS: We included 144 Italian and 79 Russian FH patients; clinical diagnosis was based on the same criteria. Patients were divided in: positive to genetic test (one causative variant), inconclusive (only variants of uncertain clinical significance [VUS]), and negative (with likely benign/benign variants, heterozygous variants in LDLRAP1 gene, or without causative variants). RESULTS: The genetic test was positive in 76.4 % of the Italian patients and in 49.4 % of the Russian patients. The presence of VUS alone was detected in 7.6 % and in 19.0 % (p < 0.001), respectively. Among patients with positive genetic diagnosis, pre-treatment LDL-C levels were higher in the Russian cohort (353.5 ± 111.3 vs. 302.7 ± 52.1 mg/dL, p = 0.009), as well as the percentage of treated patients (53.8 % vs. 14.5 %, p < 0.001) and the prevalence of premature coronary heart disease (12.8 % vs. 3.6 %, p = 0.039). Among patients carrying only VUS, mean pre-treatment LDL-C levels were similar between the cohorts (299.5 ± 68.1 vs. 295.3 ± 46.8 mg/dL, p = 0.863). Among pathogenic/likely pathogenic variants and VUS, only 5 % and 4 % was shared between the two cohorts, respectively. CONCLUSION: The genetic background of patients clinically diagnosed with FH in two different countries is characterized by high variability.


Assuntos
LDL-Colesterol , Testes Genéticos , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/epidemiologia , Feminino , Masculino , Itália/epidemiologia , Pessoa de Meia-Idade , Adulto , Federação Russa/epidemiologia , LDL-Colesterol/sangue , Heterogeneidade Genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Mutação
3.
Atherosclerosis ; 385: 117231, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648636

RESUMO

BACKGROUND AND AIMS: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age. METHODS: From the Italian LIPIGEN cohort, we selected 1188 (≥18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation. RESULTS: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives. CONCLUSIONS: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age.


Assuntos
Doença da Artéria Coronariana , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Criança , Adolescente , Fatores de Risco , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Heterozigoto
4.
Nutrients ; 15(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37571405

RESUMO

Detection and treatment of patients with familial hypercholesterolemia (FH) starting from childhood is fundamental to reduce morbidity and mortality. The activity of National realities such as the LIPIGEN (LIpid transPort disorders Italian GEnetic Network) Paediatric Group, founded in 2018, is a milestone in this context. The aim of this exploratory survey, conducted in October 2021 among Italian lipid clinics included in the LIPIGEN Paediatric Group, was to investigate the current clinical approach in the management and treatment of paediatric patients with suspected FH. A digital questionnaire composed of 20 questions investigating nutritional treatment and nutraceutical and pharmacological therapy for children and adolescents with FH was proposed to the principal investigators of 30 LIPIGEN centres. Twenty-four centres responded to the section referring to children aged < 10 years and 30 to that referring to adolescents. Overall, 66.7% of children and 73.3% of adolescents were given lipid-lowering nutritional treatment as the first intervention level for at least 3-4 months (29.2% and 23.3%) or 6-12 months (58.3% and 53.3%). Nutraceuticals were considered in 41.7% (regarding children) and 50.0% (regarding adolescents) of the centres as a supplementary approach to diet. Lipid-lowering drug therapy initiation was mainly recommended (91.7% and 80.0%). In 83.3% of children and 96.7% of adolescents, statins were the most frequently prescribed drug. We highlighted several differences in the treatment of paediatric patients with suspected FH among Italian centres; however, the overall approach is in line with the European Atherosclerosis Society (EAS) recommendations for FH children and adolescents. We consider this survey as a starting point to reinforce collaboration between LIPIGEN centres and to elaborate in the near future a consensus document on the management of paediatric patients with suspected FH so as to improve and uniform detection, management, and treatment of these patients in our country.


Assuntos
Anticolesterolemiantes , Dieta , Suplementos Nutricionais , Hiperlipoproteinemia Tipo II , Humanos , Masculino , Feminino , Criança , Adolescente , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/terapia , Anticolesterolemiantes/uso terapêutico
5.
J Am Heart Assoc ; 12(10): e029223, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37183858

RESUMO

Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and Results An lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score ≥1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups <0.0001); however, subjects with FH/M- and lp(a) score ≥1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level ≥190 mg/dL (or from 68% to 50%, considering a more conservative formula). Conclusions Our study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH.


Assuntos
Hiperlipoproteinemia Tipo II , Lipoproteína(a) , Humanos , Lipoproteína(a)/genética , Redes Reguladoras de Genes , Fatores de Risco , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/complicações , Genótipo , LDL-Colesterol
6.
Atherosclerosis ; 349: 233-239, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35562202

RESUMO

BACKGROUND AND AIMS: Little is known about the role of Lp(a) in the assessment of cardiovascular risk in the paediatric population. Trying to clarify the clinical relevance of Lp(a) in risk stratification, the aim of the study is to evaluate the association between Lp(a) plasma levels in children with familial hypercholesterolaemia (FH) and positive family history for premature cardiovascular disease (pCVD) in first- and second-degree relatives. METHODS: 653 Caucasian children and adolescents (334 females and 319 males), aged 2-17 years, with diagnosis of FH from a paediatric cohort included in the LIPIGEN Network, were selected. We compared family history of pCVD, lipid and genetic profile in two groups based on Lp(a) levels below or above 30 mg/dL. To determine the independent predictors of pCVD, a multivariate logistic regression was used, with all clinical characteristics and blood measurements as predictors. RESULTS: Subjects with Lp(a) > 30 mg/dl more frequently reported positive family history of pCVD compared to subjects with Lp(a)≤30 mg/dl (69.90% vs 36.66%, p < 0.0001), while did not show differences in terms of median [interquartile range] LDL-cholesterol level (153.00 [88.00 vs 164.50 [90.25] mg/dL, p = 0.3105). In the regression analysis, Lp(a) > 30 mg/dl was an independent predictor of family history of pCVD. Comparing subjects with or without family history of pCVD, we reported significant differences for Lp(a) > 30 mg/dl (46.25% vs 17.65%, p < 0.0001), FH genetic mutation (50.48% vs 40.75%, p = 0,0157), as well as for LDL-cholesterol (p = 0.0013) and total cholesterol (p = 0.0101). CONCLUSIONS: Children/adolescents with FH and Lp(a) > 30 mg/dl where more likely to have a positive family history of pCVD. Lp(a) screening in children and adolescents with FH may enhance risk assessment and help identify those subjects, children and relatives, at increased pCVD risk.


Assuntos
Doenças Cardiovasculares , Hiperlipoproteinemia Tipo II , Adolescente , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Criança , LDL-Colesterol , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Lipoproteína(a)/genética , Masculino , Fatores de Risco
7.
J Am Heart Assoc ; 11(7): e023668, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322671

RESUMO

Background A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without any disease-causing mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic risk score, consisting of 12 low-density lipoprotein cholesterol (LDL-C)-raising variants (polygenic LDL-C risk score), in subjects with a clinical diagnosis of FH. Methods and Results Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH-mutation positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH-mutation negative (women, 54.21%; mean age, 49.73±13.54 years) were evaluated. Patients who were FH-mutation negative had lower mean levels of pretreatment LDL-C than patients who were FH-mutation positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD) of the polygenic LDL-C risk score was 1.00 (±0.18) in patients who were FH-mutation negative and 0.94 (±0.20) in patients who were FH-mutation positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56-0.62), with sensitivity and specificity being 78% and 36%, respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL-C risk score levels were observed among patients who were FH-mutation negative having pretreatment LDL-C levels in the range of 150 to 350 mg/dL (150-249 mg/dL: 1.01 versus 0.91, P<0.0001; 250-349 mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL-C risk score and pretreatment LDL-C levels was observed among patients with FH independently of the presence of causative mutations. Conclusions This analysis confirms the role of polymorphisms in modulating LDL-C levels, even in patients with genetically confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice.


Assuntos
LDL-Colesterol , Redes Reguladoras de Genes , Hiperlipoproteinemia Tipo II , Adulto , LDL-Colesterol/sangue , Feminino , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Mutação
9.
J Clin Lipidol ; 15(6): 822-831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34756585

RESUMO

BACKGROUND: The lack of functional evidence for most variants detected during the molecular screening of patients with clinical familial hypercholesterolemia (FH) makes the definitive diagnosis difficult. METHODS: A total of 552 variants in LDLR, APOB, PCSK9 and LDLRAP1 genes found in 449 mutation-positive FH (FH/M+) patients were considered. Pathogenicity update was performed following the American College of Medical Genetics and Genomics (ACMG) guidelines with additional specifications on copy number variants, functional studies, in silico prediction and co-segregation criteria for LDLR, APOB and PCSK9 genes. Pathogenicity of LDLRAP1 variants was updated by using ACMG criteria with no change to original scoring. RESULTS: After reclassification, the proportion of FH/M+ carriers of pathogenic (P) or likely pathogenic (LP) variants, and FH/M+ carriers of likely benign (LB) or benign (B) variants, was higher than that defined by standard criteria (81.5% vs. 79.7% and 7.1% vs. 2.7%). The refinement of pathogenicity classification also reduced the percentage of FH with variants of uncertain significance (VUS) (17.7% vs. 11.4%). After adjustment, the FH diagnosis by refined criteria best predicted LDL-C levels (Padj <0.001). Notably, FH with VUS variants had higher LDL-C than those with LB (all Padj ≤ 0.033), but similar to those with LP variants. CONCLUSION: Accurate variant interpretation best predicts the increase of LDL-C levels and shows its clinical utility in the molecular diagnosis of FH.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Apolipoproteínas B/genética , Predisposição Genética para Doença/genética , Hiperlipoproteinemia Tipo II/genética , Mutação , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Adulto , Criança , LDL-Colesterol/metabolismo , Estudos de Coortes , Feminino , Predisposição Genética para Doença/classificação , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Pessoa de Meia-Idade
10.
Atheroscler Suppl ; 42: e35-e40, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33589222

RESUMO

Familial hypercholesterolemia (FH) is a common genetic disorder of lipid metabolism, still underdiagnosed and undertreated in the general population. Pathology registers could play a crucial role in the creation of a comprehensive and integrated global approach to cover all aspects of this disease. Systematic data collection of patients affected by FH has increased dramatically worldwide in the past few years. Moreover, results from registers already established for the longest time showed their potentialities in the implementation of the knowledge of FH, comparing country-specific approaches and providing real-world data about identification, management and treatment of FH individuals in the clinical practice. The potential fields of research through registers are related to the deepening of the genetic basis of disease, the study of genotype-phenotype correlation, the local adaption and implementation of diagnostic algorithms, the comparison of pharmacological approaches and treatment gaps in real-life clinical practice, the evaluation of specific subpopulations, and the identification of factors modifying cardiovascular disease risk. Registers could become also a valid resource for other rare dyslipidaemias, contributing towards the evidence-based enhancement in the worldwide care of uncommon diseases.


Assuntos
Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/terapia , Sistema de Registros , Algoritmos , Doenças Cardiovasculares/prevenção & controle , Predisposição Genética para Doença , Genótipo , Fatores de Risco de Doenças Cardíacas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/genética , Hipolipemiantes/uso terapêutico , Itália , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA