Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621906

RESUMO

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Gliose/patologia , Ratos Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocam , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
2.
BMC Complement Med Ther ; 23(1): 198, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322430

RESUMO

BACKGROUND: Depression is a neuropsychiatric disease resulting from deteriorations of molecular networks and synaptic injury induced by stress. Traditional Chinese formula Xiaoyaosan (XYS) exert antidepressant effect, which was demonstrated by a great many of clinical and basic investigation. However, the exact mechanism of XYS has not yet been fully elucidated. METHODS: In this study, chronic unpredictable mild stress (CUMS) rats were used as a model of depression. Behavioral test and HE staining were used to detect the anti-depressant effects of XYS. Furthermore, whole transcriptome sequencing was employed to establish the microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), and mRNA profiles. The biological functions and potential mechanisms of XYS for depression were gathered from the GO and KEGG pathway. Then, constructed the competing endogenous RNA (ceRNA) networks to illustrate the regulatory relationship between non-coding RNA (ncRNA) and mRNA. Additionally, longest dendrite length, total length of dendrites, number of intersections, and density of dendritic spines were detected by Golgi staining. MAP2, PSD-95, SYN were detected by immunofluorescence respectively. BDNF, TrkB, p-TrkB, PI3K, Akt, p-Akt were measured by Western Blotting. RESULTS: The results showed that XYS could increase the locomotor activity and sugar preference, decreased swimming immobility time as well as attenuate hippocampal pathological damage. A total of 753 differentially expressed lncRNAs (DElncRNAs), 28 circRNAs (DEcircRNAs), 101 miRNAs (DEmiRNAs), and 477 mRNAs (DEmRNAs) were identified after the treatment of XYS in whole transcriptome sequencing analysis. Enrichment results revealed that XYS could regulate multiple aspects of depression through different synapse or synaptic associated signal, such as neurotrophin signaling and PI3K/Akt signaling pathways. Then, vivo experiments indicated that XYS could promote length, density, intersections of synapses and also increase the expression of MAP2 in hippocampal CA1, CA3 regions. Meanwhile, XYS could increase the expression of PSD-95, SYN in the CA1, CA3 regions of hippocampal by regulating the BDNF/trkB/PI3K signal axis. CONCLUSION: The possible mechanism on synapse of XYS in depression was successfully predicted. BDNF/trkB/PI3K signal axis were the potential mechanism of XYS on synapse loss for its antidepressant. Collectively, our results provided novel information about the molecular basis of XYS in treating depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fosfatidilinositol 3-Quinases , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt , Antidepressivos/farmacologia , Sinapses/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1589-1596, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005847

RESUMO

This study aims to investigate the effect of Bombyx Batryticatus extract(BBE) on behaviors of rats with global cerebral ischemia reperfusion(I/R) and the underlying mechanism. The automatic coagulometer was used to detect the four indices of human plasma coagulation after BBE intervention for quality control of the extract. Sixty 4-week-old male SD rats were randomized into sham operation group(equivalent volume of normal saline, ip), model group(equivalent volume of normal saline, ip), positive drug group(900 IU·kg~(-1) heparin, ip), and low-, medium-, and high-dose BBE groups(0.45, 0.9, and 1.8 mg·g~(-1)·d~(-1) BBE, ip). Except the sham operation group, rats were subjected to bilateral common carotid artery occlusion followed by reperfusion(BCCAO/R) to induce I/R. The administration lasted 7 days for all the groups. The behaviors of rats were examined by beam balance test(BBT). Morphological changes of brain tissue were observed based on hematoxylin-eosin(HE) staining. Immunofluorescence method was used to detect common leukocyte antigen(CD45), leukocyte differentiation antigen(CD11b), and arginase-1(Arg-1) in cerebral cortex(CC). The protein expression of interleukin-1ß(IL-1ß), interleukin-4(IL-4), interleukin-6(IL-6), and interleukin-10(IL-10) was detected by enzyme-linked immunosorbent assay(ELISA). The non-targeted metabonomics was employed to detect the levels of metabolites in plasma and CC of rats after BBE intervention. The results of quality control showed that the BBE prolonged the activated partial thromboplastin time(APTT), prothrombin time(PT), and thrombin time(TT) of human plasma, which was similar to the anticoagulation effect of BBE obtained previously. The results of behavioral test showed that the BBT score of the model group increased compared with that of the sham operation group. Compared with the model group, BBE reduced the BBT score. As for the histomorphological examination, compared with the sham operation group, the model group showed morphological changes of a lot of nerve cells in CC. The nerve cells with abnormal morphology in CC decreased after the intervention of BBE compared with those in the model group. Compared with the sham operation group, the model group had high average fluorescence intensity of CD45 and CD11b in the CC. The average fluorescence intensity of CD11b decreased and the average fluorescence intensity of Arg-1 increased in CC in the low-dose BBE group compared with those in the model group. The average fluorescence intensity of CD45 and CD11b decreased and the average fluorescence intensity of Arg-1 increased in medium-and high-dose BBE groups compared with those in the model group. The expression of IL-1ß and IL-6 was higher and the expression of IL-4 and IL-10 was lower in the model group than in the sham operation group. The expression of IL-1ß and IL-6 was lower and the expression of IL-4 and IL-10 was higher in the low-dose, medium-dose, and high-dose BBE groups than in the model group. The results of non-targeted metabonomics showed that 809 metabolites of BBE were identified, and 57 new metabolites in rat plasma and 45 new metabolites in rat CC were found. BBE with anticoagulant effect can improve the behaviors of I/R rats, and the mechanism is that it promotes the polarization of microglia to M2 type, enhances its anti-inflammatory and phagocytic functions, and thus alleviates the damage of nerve cells in CC.


Assuntos
Bombyx , Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Ratos , Masculino , Animais , Interleucina-10 , Ratos Sprague-Dawley , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Solução Salina/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Reperfusão , Neurônios
4.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4551-4559, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164859

RESUMO

Ischemic stroke is one of the main causes of death and long-term disability worldwide, which seriously affects the quality of life of patients and brings a heavy economic burden to families and society. Epidemiological studies have shown that stroke has become the second leading cause of death and major disabling disease in the world, with the characteristics of high morbidity, high recurrence, and high mortality. Epigenetic mechanism is the molecular process where gene expression and function in each cell are dynamically regulated and interconnected and a biological mechanism that changes genetic performance without changing the DNA sequence, including DNA methylation, histone modifications, and non-coding RNA. However, the research on epigenetics is currently focused on other diseases such as tumors. Recent studies have found that epigenetics has received extensive attention in the past few decades as a key factor involved in the pathophysiological process of ischemic stroke. The present study introduced the mediation of epigenetics in the induction of stroke, summarized the potential drug targets for these mechanisms in the treatment of stroke, and further explored the significance of traditional Chinese medicine(TCM) against cerebral ischemia injury based on TCM classification of stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Metilação de DNA , Epigênese Genética , Humanos , AVC Isquêmico/genética , Qualidade de Vida , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Acidente Vascular Cerebral/genética
5.
Mol Med Rep ; 21(5): 2006-2018, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323760

RESUMO

Ischemic stroke is one of the leading causes of mortality and disability worldwide. However, there is a current lack of effective therapies available. As the resident macrophages of the brain, microglia can monitor the microenvironment and initiate immune responses. In response to various brain injuries, such as ischemic stroke, microglia are activated and polarized into the proinflammatory M1 phenotype or the anti­inflammatory M2 phenotype. The immunomodulatory molecules, such as cytokines and chemokines, generated by these microglia are closely associated with secondary brain damage or repair, respectively, following ischemic stroke. It has been shown that M1 microglia promote secondary brain damage, whilst M2 microglia facilitate recovery following stroke. In addition, autophagy is also reportedly involved in the pathology of ischemic stroke through regulating the activation and function of microglia. Therefore, this review aimed to provide a comprehensive overview of microglia activation, their functions and changes, and the modulators of these processes, including transcription factors, membrane receptors, ion channel proteins and genes, in ischemic stroke. The effects of autophagy on microglia polarization in ischemic stroke were also reviewed. Finally, future research areas of ischemic stroke and the implications of the current knowledge for the development of novel therapeutics for ischemic stroke were identified.


Assuntos
Autofagia/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Polaridade Celular/efeitos dos fármacos , AVC Isquêmico/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Animais , Isquemia Encefálica/patologia , Citocinas/metabolismo , Citocinas/farmacologia , Humanos , Inflamação/metabolismo , Canais Iônicos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Imunológicos/metabolismo , Fatores de Transcrição/metabolismo
6.
Neural Regen Res ; 10(9): 1450-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26604906

RESUMO

The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood flow, improve neurological behavior, decrease infarct volume and promote proliferation and differentiation of neural stem cells in the hippocampus and lateral ventricles. However, there is a lack of studies on whether total saponins of Panax notoginseng have potential benefits on immature neuroblasts in the olfactory bulb following ischemia and reperfusion. This study established a rat model of global cerebral ischemia and reperfusion using four-vessel occlusion. Rats were administered total saponins of Panax notoginseng at 75 mg/kg intraperitoneally 30 minutes after ischemia then once a day, for either 7 or 14 days. Total saponins of Panax notoginseng enhanced the number of doublecortin (DCX)(+) neural progenitor cells and increased co-localization of DCX with neuronal nuclei and phosphorylated cAMP response element-binding/DCX(+) neural progenitor cells in the olfactory bulb at 7 and 14 days post ischemia. These findings indicate that following global brain ischemia/reperfusion, total saponins of Panax notoginseng promote differentiation of DCX(+) cells expressing immature neuroblasts in the olfactory bulb and the underlying mechanism is related to the activation of the signaling pathway of cyclic adenosine monophosphate response element binding protein.

7.
Mol Med Rep ; 11(6): 4047-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25672910

RESUMO

The expression of Ferroportin (Fpn) was examined at different time points in rats following focal cerebral ischemia treated with or without the traditional Chinese medicine Naotaifang. Initially, rats were randomly divided into 2, 6, 12, 24 and 72 h groups following middle cerebral artery occlusion (MCAO) and the mRNA and protein level of Fpn was detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT­PCR) at the above time points. Secondly, the rats were randomly divided into five groups as follows: Sham surgery group, model group, low­dose group (3 g/kg NTE), medium dose group (9 g/kg NTE) and the high­dose group (27 g/kg NTE). After 3 days of corresponding therapy by intragastric administration once a day, the regional cerebral ischemia model was reproduced by the MCAO suture method. On the third day, the neurological behavior of the rats was analyzed by neurobehavioral assessment. Fpn in the hippocampal CA2 region was measured by immunohistochemistry and the mRNA level of Fpn was detected by RT­PCR. Expression of Fpn in the hippocampal CA2 region reached a peak 12 h after surgery (P<0.05, compared with the model group). The high­dose group (27 g/kg NTE) exhibited a lower neurological behavior score (P<0.05) and a higher level of expression of Fpn at the mRNA and protein level compared with the sham surgery group and model group (P<0.05). Dysregulation of intracellular iron balance is possibly a new mechanism underlying cerebral ischemia. NTE can protect the neuronal population in the hippocampal CA2 region by adjusting the expression of Fpn to balance iron levels following cerebral ischemia.


Assuntos
Proteínas de Transporte de Cátions/genética , Medicamentos de Ervas Chinesas/uso terapêutico , Hipocampo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Hipocampo/patologia , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Masculino , RNA Mensageiro/análise , RNA Mensageiro/genética , Ratos Sprague-Dawley
8.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 34(10): 1225-30, 2014 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-25509267

RESUMO

OBJECTIVE: To observe the therapeutic angiogenesis effect of naotai recipe (NR) on local ischemia/reperfusion (I/R) injury of rats by observing signaling pathway of hypoxia-inducible factor-lα (HIF-1α) and vascular endothelial growth factor (VEGF). METHODS: Totally 120 Sprague-Dawley (SD) rats were randomly divided into 4 groups, namely, the normal control group (n =12), the sham-operation group (n =12), the I/R model group (n =48), and the NR group (n =48). Cerebral I/R injury models were established using thread suture method. Rats in the I/R model group and the NR group were sub-divided into 4 sub-groups according to the 1st, 3rd, 5th, and 7th I/R day (n =12). The phenomenon of neovasculization was observed by immunofluorescence staining. The protein and mRNA expression levels of HIF-la, VEGF-A, and VEGFR II receptor were detected by RT-PCR. RESULTS: There were a large amount of labels for neovasculization in the ischemic area of the NR group. Double-immunofluorescence labeling [vWF (red) and BrdU (green)] was observed in the NR group. Compared with the model group, the HIF-1α protein expression was obviously enhanced on the 1 st day of I/R (P <0.01), and the VEGF protein expression started to enhance on the 3rd day in the NR group (P <0.01). The VEGFR protein expression level was the highest in the NR group on the 5th day of I/R (P <0.01). The protein expression of VEGF and HIF-1α started to decrease on the 7th day of I/R. CONCLUSION: NR could strengthen angiogenesis after I/R by elevating the expression of HIF-lα and activating HIF-lα/VEGF signaling pathway.


Assuntos
Isquemia Encefálica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Infarto Cerebral , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia , Neovascularização Patológica , Ratos Sprague-Dawley , Traumatismo por Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA