Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Radiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750169

RESUMO

OBJECTIVES: To evaluate signal enhancement ratio (SER) for tissue characterization and prognosis stratification in pancreatic adenocarcinoma (PDAC), with quantitative histopathological analysis (QHA) as the reference standard. METHODS: This retrospective study included 277 PDAC patients who underwent multi-phase contrast-enhanced (CE) MRI and whole-slide imaging (WSI) from three centers (2015-2021). SER is defined as (SIlt - SIpre)/(SIea - SIpre), where SIpre, SIea, and SIlt represent the signal intensity of the tumor in pre-contrast, early-, and late post-contrast images, respectively. Deep-learning algorithms were implemented to quantify the stroma, epithelium, and lumen of PDAC on WSIs. Correlation, regression, and Bland-Altman analyses were utilized to investigate the associations between SER and QHA. The prognostic significance of SER on overall survival (OS) was evaluated using Cox regression analysis and Kaplan-Meier curves. RESULTS: The internal dataset comprised 159 patients, which was further divided into training, validation, and internal test datasets (n = 60, 41, and 58, respectively). Sixty-five and 53 patients were included in two external test datasets. Excluding lumen, SER demonstrated significant correlations with stroma (r = 0.29-0.74, all p < 0.001) and epithelium (r = -0.23 to -0.71, all p < 0.001) across a wide post-injection time window (range, 25-300 s). Bland-Altman analysis revealed a small bias between SER and QHA for quantifying stroma/epithelium in individual training, validation (all within ± 2%), and three test datasets (all within ± 4%). Moreover, SER-predicted low stromal proportion was independently associated with worse OS (HR = 1.84 (1.17-2.91), p = 0.009) in training and validation datasets, which remained significant across three combined test datasets (HR = 1.73 (1.25-2.41), p = 0.001). CONCLUSION: SER of multi-phase CE-MRI allows for tissue characterization and prognosis stratification in PDAC. CLINICAL RELEVANCE STATEMENT: The signal enhancement ratio of multi-phase CE-MRI can serve as a novel imaging biomarker for characterizing tissue composition and holds the potential for improving patient stratification and therapy in PDAC. KEY POINTS: Imaging biomarkers are needed to better characterize tumor tissue in pancreatic adenocarcinoma. Signal enhancement ratio (SER)-predicted stromal/epithelial proportion showed good agreement with histopathology measurements across three distinct centers. Signal enhancement ratio (SER)-predicted stromal proportion was demonstrated to be an independent prognostic factor for OS in PDAC.

2.
Int J Surg ; 110(2): 740-749, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085810

RESUMO

BACKGROUND: Undetectable occult liver metastases block the long-term survival of pancreatic ductal adenocarcinoma (PDAC). This study aimed to develop a radiomics-based model to predict occult liver metastases and assess its prognostic capacity for survival. MATERIALS AND METHODS: Patients who underwent surgical resection and were pathologically proven with PDAC were recruited retrospectively from five tertiary hospitals between January 2015 and December 2020. Radiomics features were extracted from tumors, and the radiomics-based model was developed in the training cohort using LASSO-logistic regression. The model's performance was assessed in the internal and external validation cohorts using the area under the receiver operating curve (AUC). Subsequently, the association of the model's risk stratification with progression-free survival (PFS) and overall survival (OS) was then statistically examined using Cox regression analysis and the log-rank test. RESULTS: A total of 438 patients [mean (SD) age, 62.0 (10.0) years; 255 (58.2%) male] were divided into the training cohort ( n =235), internal validation cohort ( n =100), and external validation cohort ( n =103). The radiomics-based model yielded an AUC of 0.73 (95% CI: 0.66-0.80), 0.72 (95% CI: 0.62-0.80), and 0.71 (95% CI: 0.61-0.80) in the training, internal validation, and external validation cohorts, respectively, which were higher than the preoperative clinical model. The model's risk stratification was an independent predictor of PFS (all P <0.05) and OS (all P <0.05). Furthermore, patients in the high-risk group stratified by the model consistently had a significantly shorter PFS and OS at each TNM stage (all P <0.05). CONCLUSION: The proposed radiomics-based model provided a promising tool to predict occult liver metastases and had a great significance in prognosis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Radiômica , Estudos Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia
3.
Int J Comput Assist Radiol Surg ; 17(6): 1115-1124, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384552

RESUMO

PURPOSE: Clinical rib fracture diagnosis via computed tomography (CT) screening has attracted much attention in recent years. However, automated and accurate segmentation solutions remain a challenging task due to the large sets of 3D CT data to deal with. Down-sampling is often required to face computer constraints, but the performance of the segmentation may decrease in this case. METHODS: A new multi-angle projection network (MAPNet) method is proposed for accurately segmenting rib fractures by means of a deep learning approach. The proposed method incorporates multi-angle projection images to complementarily and comprehensively extract the rib characteristics using a rib extraction (RE) module and the fracture features using a fracture segmentation (FS) module. A multi-angle projection fusion (MPF) module is designed for fusing multi-angle spatial features. RESULTS: It is shown that MAPNet can capture more detailed rib fracture features than some commonly used segmentation networks. Our method achieves a better performance in accuracy (88.06 ± 6.97%), sensitivity (89.26 ± 5.69%), specificity (87.58% ± 7.66%) and in terms of classical criteria like dice (85.41 ± 3.35%), intersection over union (IoU, 80.37 ± 4.63%), and Hausdorff distance (HD, 4.34 ± 3.1). CONCLUSION: We propose a rib fracture segmentation technique to deal with the problem of automatic fracture diagnosis. The proposed method avoids the down-sampling of 3D CT data through a projection technique. Experimental results show that it has excellent potential for clinical applications.


Assuntos
Aprendizado Profundo , Fraturas das Costelas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Fraturas das Costelas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
4.
Med Image Anal ; 71: 102055, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866259

RESUMO

Three-dimensional (3D) integrated renal structures (IRS) segmentation targets segmenting the kidneys, renal tumors, arteries, and veins in one inference. Clinicians will benefit from the 3D IRS visual model for accurate preoperative planning and intraoperative guidance of laparoscopic partial nephrectomy (LPN). However, no success has been reported in 3D IRS segmentation due to the inherent challenges in grayscale distribution: low contrast caused by the narrow task-dependent distribution range of regions of interest (ROIs), and the networks representation preferences caused by the distribution variation inter-images. In this paper, we propose the Meta Greyscale Adaptive Network (MGANet), the first deep learning framework to simultaneously segment the kidney, renal tumors, arteries and veins on CTA images in one inference. It makes innovations in two collaborate aspects: 1) The Grayscale Interest Search (GIS) adaptively focuses segmentation networks on task-dependent grayscale distributions via scaling the window width and center with two cross-correlated coefficients for the first time, thus learning the fine-grained representation for fine segmentation. 2) The Meta Grayscale Adaptive (MGA) learning makes an image-level meta-learning strategy. It represents diverse robust features from multiple distributions, perceives the distribution characteristic, and generates the model parameters to fuse features dynamically according to image's distribution, thus adapting the grayscale distribution variation. This study enrolls 123 patients and the average Dice coefficients of the renal structures are up to 87.9%. Fine selection of the task-dependent grayscale distribution ranges and personalized fusion of multiple representations on different distributions will lead to better 3D IRS segmentation quality. Extensive experiments with promising results on renal structures reveal powerful segmentation accuracy and great clinical significance in renal cancer treatment.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Renais , Humanos , Rim/diagnóstico por imagem , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia
5.
Phys Med Biol ; 65(23): 235053, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32698172

RESUMO

Pulmonary nodule false-positive reduction is of great significance for automated nodule detection in clinical diagnosis of low-dose computed tomography (LDCT) lung cancer screening. Due to individual intra-nodule variations and visual similarities between true nodules and false positives as soft tissues in LDCT images, the current clinical practices remain subject to shortcomings of potential high-risk and time-consumption issues. In this paper, we propose a multi-dimensional nodule detection network (MD-NDNet) for automatic nodule false-positive reduction using deep convolutional neural network (DCNNs). The underlying method collaboratively integrates multi-dimensional nodule information to complementarily and comprehensively extract nodule inter-plane volumetric correlation features using three-dimensional CNNs (3D CNNs) and spatial nodule correlation features from sagittal, coronal, and axial planes using two-dimensional CNNs (2D CNNs) with attention module. To incorporate different sizes and shapes of nodule candidates, a multi-scale ensemble strategy is employed for probability aggregation with weights. The proposed method is evaluated on the LUNA16 challenge dataset in ISBI 2016 with ten-fold cross-validation. Experiment results show that the proposed framework achieves classification performance with a CPM score of 0.9008. All of these indicate that our method enables an efficient, accurate and reliable pulmonary nodule detection for clinical diagnosis.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/patologia , Redes Neurais de Computação , Nódulo Pulmonar Solitário/patologia , Reações Falso-Positivas , Humanos , Imageamento Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA