Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507840

RESUMO

Cadmium (Cd) is a toxic heavy metal, increasingly accumulating in the environment and its presence in various environmental compartments represents a significant risk to human health via the food chain. Epigallocatechin-3-Gallate (EGCG) is a prominent secondary metabolite, which can safeguard plants from biotic and abiotic stress. However, the role of EGCG in flavonoid synthesis, nutrient acquisition and reactive oxygen species (ROS) metabolism under Cd stress remains unclear. Here, we examined the effects of EGCG and Cd treatment on leaf photochemical efficiency, cell ultrastructure, essential element acquisition, antioxidant system, and secondary metabolism in tomato (Solanum lycopersicum L.). The results showed that O2•-, H2O2, and malondialdehyde levels increased after Cd treatment, but Fv/Fm decreased significantly, suggesting that Cd induced oxidative stress and photoinhibition. However, EGCG mitigated the adverse effects of Cd-induced phytotoxicity in both the roots and leaves. A decrease in ROS accumulation under EGCG + Cd treatment was mainly attributed to the significant enhancement in antioxidant enzyme activity, flavonoid content, and PHENYLALANINE AMMONIA-LYASE expression in roots. Moreover, EGCG reduced Cd content but increased some essential nutrient contents in tomato plants. Transmission electron microscopy-based observations revealed that EGCG treatment safeguards leaf and root cell ultrastructure under Cd stress. This implies that tomato plants subjected to Cd stress experienced advantageous effects upon receiving EGCG treatment. The present work elucidated critical mechanisms by which EGCG induces tolerance to Cd, thereby providing a basis for future investigations into environmentally sustainable agricultural practices in areas contaminated with heavy metals, for utilizing naturally occurring substances found in plants.


Assuntos
Catequina , Catequina/análogos & derivados , Solanum lycopersicum , Humanos , Antioxidantes/metabolismo , Cádmio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Homeostase , Catequina/farmacologia , Catequina/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo
2.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256755

RESUMO

Shading is an effective agronomic technique to protect tea plants from intense sunlight. However, there are currently very few studies on more effective shading methods to improve the quality of summer tea. In this study, 'Longjing43' plants were grown under four different shading treatments for 14 days, with no shading as the control. Among the four shading treatments, double-layer-net shadings had the most positive impact on the tea quality, resulting in higher levels of amino acids but lower levels of tea polyphenols. Additionally, double-layer-net shadings provided more suitable microenvironments for tea plants. The tea leaves in T4 (double nets 50 cm above the plant canopy) contained 16.13 mg∙g-1 of umami and sweet amino acids, which was significantly higher than in other treatments. T4 had the lowest air temperature and the most suitable and stable soil water content. Interestingly, the ratio of red light to far-red light in T4 was only 1.65, much lower than other treatments, which warrants further study. In conclusion, the microenvironment induced by shading can greatly affect the tea quality, and double-layer-net shading is better for improving the quality of summer tea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA