Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2024: 5573353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361765

RESUMO

As an interstitial fibrosis disease characterized by diffuse alveolitis and structural alveolar disorders, idiopathic pulmonary fibrosis (IPF) has high lethality but lacks limited therapeutic drugs. A hospital preparation used for the treatment of viral pneumonia, Qingfei Tongluo mixture (QFTL), is rumored to have protective effects against inflammatory and respiratory disease. This study aims to confirm whether it has a therapeutic effect on bleomycin-induced IPF in rats and to elucidate its mechanism of action. Male SD rats were randomly divided into the following groups: control, model, CQ + QFTL (84 mg/kg chloroquine (CQ) + 3.64 g/kg QFTL), QFTL-L, M, H (3.64, 7.28, and 14.56 g/kg, respectively) and pirfenidone (PFD 420 mg/kg). After induction modeling and drug intervention, blood samples and lung tissue were collected for further detection. Body weight and lung coefficient were examined, combined with hematoxylin and eosin (H&E) and Masson staining to observe lung tissue lesions. The enzyme-linked immunosorbent assay (ELISA) and the hydroxyproline (HYP) assay kit were used to detect changes in proinflammatory factors (transforming growth factor-ß (TGF-ß), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß)) and HYP. Immunohistochemistry and Western blotting were performed to observe changes in proteins related to pulmonary fibrosis (α-smooth muscle actin (α-SMA) and matrix metalloproteinase 12 (MMP12)) and autophagy (P62 and mechanistic target of rapamycin (mTOR)). Treatment with QFTL significantly improved the adverse effects of bleomycin on body weight, lung coefficient, and pathological changes. Then, QFTL reduced bleomycin-induced increases in proinflammatory mediators and HYP. The expression changes of pulmonary fibrosis and autophagy marker proteins are attenuated by QFTL. Furthermore, the autophagy inhibitor CQ significantly reversed the downward trend in HYP levels and α-SMA protein expression, which QFTL improved in BLM-induced pulmonary fibrosis rats. In conclusion, QFTL could effectively attenuate bleomycin-induced inflammation and pulmonary fibrosis through mTOR-dependent autophagy in rats. Therefore, QFTL has the potential to be an alternative treatment for IPF in clinical practice.


Assuntos
Medicamentos de Ervas Chinesas , Pneumonia , Fibrose Pulmonar , Ratos , Masculino , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/toxicidade , Ratos Sprague-Dawley , Pulmão/metabolismo , Pneumonia/induzido quimicamente , Serina-Treonina Quinases TOR/farmacologia , Peso Corporal , Fator de Crescimento Transformador beta1/metabolismo
2.
Biotechnol Genet Eng Rev ; : 1-20, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641597

RESUMO

Wuwei xiaoduyin (WWXDY) is a prescription for Chronic osteomyelitis (COM) in traditional Chinese medicine (TCM). However, its specific mechanism remains unclear. The objective of this study was to investigate the mechanism of WWXDY in COM treatment. To clarify the potential role of TAZ in the treatment of COM by WWXDY via regulatory CD4+ T cells differentiation. The expressions of TAZ, RORγt and Foxp3 were determined by Quantitative Real-time PCR and Western blot. Besides, levels of IL-21, IL-17 and IL-10 in peripheral blood were detected by using ELISA. Molecular dynamics simulations and docking were further utilized to explore the binding mechanism. COM resulted in abnormal cell differentiation and an imbalance of Treg/Th17. In comparison with the control group, the percentage of Treg cells, Foxp3 expression and secretion of IL-17 and -21 cytokines decreased (P < 0.001), while the proportion of Th17 cells, the levels of TAZ and RORγt and concentration of IL-10 in PBMCs increased in the COM group (P < 0.001). Furthermore, the above abnormal differentiation and function of Treg/Th17 cells in COM were suppressed after treatment with WWXDY in vivo and in vitro. In addition, TEAD1 inhibited the therapeutic effect of WWXDY in terms of Treg/Th17 cells with COM. it was found that the main active ingredients were cichoric acid and isocarlinoside. WWXDY regulates immunoregulatory properties of Treg/Th17 cells in COM mainly by mediating TAZ expression. By inhibiting the chronic inflammation in COM, WWXDY is potentially used to inhibit the progression of COM into bone tumors.

3.
Front Med (Lausanne) ; 8: 649896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748164

RESUMO

Cancer is one of the most leading causes of mortalities worldwide. It is caused by the accumulation of genetic and epigenetic alterations in 2 types of genes: tumor suppressor genes (TSGs) and proto-oncogenes. In recent years, development of the clustered regularly interspaced short palindromic repeats (CRISPR) technology has revolutionized genome engineering for different cancer research ranging for research ranging from fundamental science to translational medicine and precise cancer treatment. The CRISPR/CRISPR associated proteins (CRISPR/Cas) are prokaryote-derived genome editing systems that have enabled researchers to detect, image, manipulate and annotate specific DNA and RNA sequences in various types of living cells. The CRISPR/Cas systems have significant contributions to discovery of proto-oncogenes and TSGs, tumor cell epigenome normalization, targeted delivery, identification of drug resistance mechanisms, development of high-throughput genetic screening, tumor models establishment, and cancer immunotherapy and gene therapy in clinics. Robust technical improvements in CRISPR/Cas systems have shown a considerable degree of efficacy, specificity, and flexibility to target the specific locus in the genome for the desired applications. Recent developments in CRISPRs technology offers a significant hope of medical cure against cancer and other deadly diseases. Despite significant improvements in this field, several technical challenges need to be addressed, such as off-target activity, insufficient indel or low homology-directed repair (HDR) efficiency, in vivo delivery of the Cas system components, and immune responses. This study aims to overview the recent technological advancements, preclinical and perspectives on clinical applications of CRISPR along with their advantages and limitations. Moreover, the potential applications of CRISPR/Cas in precise cancer tumor research, genetic, and other precise cancer treatments discussed.

4.
Curr Top Med Chem ; 20(30): 2762-2776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851962

RESUMO

Central nervous system (CNS) cancers are among the most common and treatment-resistant diseases. The main reason for the low treatment efficiency of the disorders is the barriers against targeted delivery of anticancer agents to the site of interest, including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). BBB is a strong biological barrier separating circulating blood from brain extracellular fluid that selectively and actively prevents cytotoxic agents and majority of anticancer drugs from entering the brain. BBB and BBTB are the major impediments against targeted drug delivery into CNS tumors. Nanotechnology and its allied modalities offer interesting and effective delivery strategies to transport drugs across BBB to reach brain tissue. Integrating anticancer drugs into different nanocarriers improves the delivery performance of the resultant compounds across BBB. Surface engineering of nanovehicles using specific ligands, antibodies and proteins enhances the BBB crossing efficacy as well as selective and specific targeting to the target cancerous tissues in CNS tumors. Multifunctional nanoparticles (NPs) have brought revolutionary advances in targeted drug delivery to brain tumors. This study reviews the main anatomical, physiological and biological features of BBB and BBTB in drug delivery and the recent advances in targeting strategies in NPs-based drug delivery for CNS tumors. Moreover, we discuss advances in using specific ligands, antibodies, and surface proteins for designing and engineering of nanocarriers for targeted delivery of anticancer drugs to CNS tumors. Finally, the current clinical applications and the perspectives in the targeted delivery of therapeutic molecules and genes to CNS tumors are discussed.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Antineoplásicos/química , Barreira Hematoencefálica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/patologia , Portadores de Fármacos/química , Humanos , Nanomedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA