Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 13(9): 5396-5405, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471225

RESUMO

Maternal diabetes mellitus reduces oocyte quality, such as abnormalities of spindle assembly and chromosome segregation, mitochondrial dysfunction, decrease of fertilization rate, increase of ROS, and so on. So, it is important to research how to restore the decreased oocyte quality induced by maternal diabetes mellitus. Polyphenols are the most abundant bioactive components of green tea. It is reported that tea polyphenols have many health functions, for instance anti-oxidation, anti-inflammation, anti-obesity, and anti-diabetes. Thus, we hypothesize that tea polyphenols may play a crucial role in alleviating adverse effects of diabetes on oocyte quality. In the present study, we researched the effects of tea polyphenols on diabetic oocyte maturation in vitro. Compared with the control, oocytes from diabetic mice displayed a lower maturation rate and a higher frequency of spindle defects and chromosome misalignment. However, tea polyphenols significantly increased the oocyte maturation rate, and reduced the incidence of abnormal spindle assembly and chromosome segregation. Tea polyphenols also obviously decreased the reactive oxygen species (ROS) levels in diabetic oocytes, and increased the expression of antioxidant genes (Sod1 and Sod2). Abnormal mitochondrial membrane potential was also alleviated in diabetic oocytes, and the expression of genes regulating mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1) was significantly increased while tea polyphenols were added. Meanwhile, tea polyphenols reduced DNA damage in diabetic oocytes which may be mediated by the increased expression of Rad51, related to DNA damage repair. Our results suggest that tea polyphenols would, at least partially, restore the adverse effects of diabetes mellitus on oocyte quality.


Assuntos
Diabetes Mellitus Experimental , Polifenóis , Animais , Diabetes Mellitus Experimental/metabolismo , Camundongos , Mitocôndrias , Oócitos , Polifenóis/metabolismo , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Chá/metabolismo
2.
Cells ; 12(1)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36611886

RESUMO

For humans, ARTs (assisted reproductive technologies) have become the most effective method to treat subfertility/infertility in clinic. To obtain enough oocytes during ART, ovarian stimulation is performed by exogenous hormones, and some patients undergo several ovarian stimulation cycles. Although some adverse effects of ARTs on women and offspring are reported, few studies are focused on the effects of multiple superovulation on ovarian reserve. In the present study, we found that repeated superovulation significantly reduced primordial follicle number and the serum AMH. Compared to the decreased antral follicle number, the expression of genes related to primordial follicle activation, such as Foxo3, Akt, and Rptor, and the atretic follicle number in ovaries were increased by superovulation times. We further found that repeated superovulation reduced the plasma level of FSH, LH, and estradiol, and increased the expression of genes related to apoptosis (Bax, Casp3 (caspase-3), Casp8, and Casp9) in granulosa cells, providing evidence that repeated superovulation disrupted the balance between survival and death in granulosa cells. In summary, our results suggest that repeated superovulation has adverse effects on folliculogenesis.


Assuntos
Folículo Ovariano , Superovulação , Feminino , Humanos , Superovulação/fisiologia , Folículo Ovariano/metabolismo , Ovário/metabolismo , Oócitos/metabolismo , Estradiol/farmacologia
3.
Food Funct ; 12(21): 10311-10323, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610081

RESUMO

Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.


Assuntos
Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Chá , Animais , Feminino , Humanos , Ratos
4.
J Cell Biochem ; 120(1): 715-726, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30191590

RESUMO

Tributyltin oxide (TBTO) has been widely used as marine antifouling composition, preservative, biocide, and a stabilizer in plastic industry. Previous studies have indicated that TBTO can cause immunotoxicity as an environmental pollutant. However, little is known about its reproductive toxicity, especially on female oocyte maturation and the underlying mechanisms. In this study, mouse oocytes were cultured with different concentrations of TBTO in vitro, and several crucial events during meiotic maturation were evaluated. We found that the first polar body extrusion rate was significantly reduced, which reflected the disruption of meiotic maturation. The rate of abnormal spindle organization increased significantly, accompanied with a higher rate of chromosome misalignment. In addition, TBTO treatment increased reactive oxygen species generation markedly, which also accelerated the early-stage apoptosis. Moreover, heterogeneous mitochondrial distribution, mitochondrial dysfunction, and higher rate of aneuploidy were detected, which consequently disrupted in vitro fertilization. In conclusion, our results indicated that TBTO exposure could impair mouse oocyte maturation by affecting spindle organization, chromosome alignment, mitochondria functions, oxidative stress, and apoptosis.


Assuntos
Aneugênicos/farmacologia , Oogênese/efeitos dos fármacos , Corpos Polares/metabolismo , Compostos de Trialquitina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Troca Genética/efeitos dos fármacos , Feminino , Fertilização in vitro/efeitos dos fármacos , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/metabolismo
5.
Am J Hum Genet ; 103(5): 740-751, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388401

RESUMO

Androgenetic complete hydatidiform moles are human pregnancies with no embryos and affect 1 in every 1,400 pregnancies. They have mostly androgenetic monospermic genomes with all the chromosomes originating from a haploid sperm and no maternal chromosomes. Androgenetic complete hydatidiform moles were described in 1977, but how they occur has remained an open question. We identified bi-allelic deleterious mutations in MEI1, TOP6BL/C11orf80, and REC114, with roles in meiotic double-strand breaks formation in women with recurrent androgenetic complete hydatidiform moles. We investigated the occurrence of androgenesis in Mei1-deficient female mice and discovered that 8% of their oocytes lose all their chromosomes by extruding them with the spindles into the first polar body. We demonstrate that Mei1-/- oocytes are capable of fertilization and 5% produce androgenetic zygotes. Thus, we uncover a meiotic abnormality in mammals and a mechanism for the genesis of androgenetic zygotes that is the extrusion of all maternal chromosomes and their spindles into the first polar body.


Assuntos
Androgênios/genética , Mola Hidatiforme/genética , Mutação/genética , Alelos , Animais , Cromossomos/genética , Feminino , Humanos , Masculino , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/patologia , Gravidez , Zigoto/patologia
6.
Science ; 342(6165): 1518-21, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24357321

RESUMO

The duration of a woman's reproductive period is determined by the size and persistence of a dormant oocyte pool. Specific oocyte genes are essential for follicle maintenance and female fertility. The mechanisms that regulate the expression of these genes are poorly understood. We found that a cullin-ring finger ligase-4 (CRL4) complex was crucial in this process. Oocyte-specific deletion of the CRL4 linker protein DDB1 or its substrate adaptor VPRBP (also known as DCAF1) caused rapid oocyte loss, premature ovarian insufficiency, and silencing of fertility maintaining genes. CRL4(VPRBP) activates the TET methylcytosine dioxygenases, which are involved in female germ cell development and zygote genome reprogramming. Hence, CRL4(VPRBP) ubiquitin ligase is a guardian of female reproductive life in germ cells and a maternal reprogramming factor after fertilization.


Assuntos
Proteínas de Transporte/metabolismo , Reprogramação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Fertilidade/genética , Oócitos/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Transporte/genética , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Feminino , Inativação Gênica , Disgenesia Gonadal/genética , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Oxigenases de Função Mista , Ovário/fisiopatologia , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/genética
7.
Biol Reprod ; 88(5): 117, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23515675

RESUMO

Maternal diabetes has adverse effects not only on oocyte quality but also on embryo development. However, it is still unknown whether the DNA imprinting in oocytes is altered by diabetes. By using streptozotocin (STZ)-induced and nonobese diabetic (NOD) mouse models we investigated the effect of maternal diabetes on DNA methylation of imprinted genes in oocytes. Mice which were judged as being diabetic 4 days after STZ injection were used for experiments. In superovulated oocytes of diabetic mice, the methylation pattern of Peg3 differential methylation regions (DMR) was affected in a time-dependent manner, and evident demethylation was observed on Day 35 after STZ injection. The expression level of DNA methyltransferases (DNMTs) was also decreased in a time-dependent manner in diabetic oocytes. However, the methylation patterns of H19 and Snrpn DMRs were not significantly altered by maternal diabetes, although there were some changes in Snrpn. In NOD mice, the methylation pattern of Peg3 was similar to that of STZ-induced mice. Embryo development was adversely affected by maternal diabetes; however, no evident imprinting abnormality was observed in oocytes from female offspring derived from a diabetic mother. These results indicate that maternal diabetes has adverse effects on DNA methylation of maternally imprinted gene Peg3 in oocytes of a diabetic female in a time-dependent manner, but methylation in offspring's oocytes is normal.


Assuntos
Metilação de DNA , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Expressão Gênica , Oócitos/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Desenvolvimento Embrionário/genética , Feminino , Impressão Genômica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos NOD , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Centrais de snRNP
8.
Reprod Fertil Dev ; 25(3): 495-502, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23182369

RESUMO

UCHL5IP is one of the subunits of the haus complex, which is important for microtubule generation, spindle bipolarity and accurate chromosome segregation in Drosophila and human mitotic cells. In this study, the expression and localisation of UCHL5IP were explored, as well as its functions in mouse oocyte meiotic maturation. The results showed that the UCHL5IP protein level was consistent during oocyte maturation and it was localised to the meiotic spindle in MI and MII stages. Knockdown of UCHL5IP led to spindle defects, chromosome misalignment and disruption of γ-tubulin localisation in the spindle poles. These results suggest that UCHL5IP plays critical roles in spindle formation during mouse oocyte meiotic maturation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Oogênese , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Western Blotting , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Técnicas de Maturação in Vitro de Oócitos , Meiose , Camundongos , Camundongos Endogâmicos ICR , Microinjeções , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Morfolinos , Oligorribonucleotídeos Antissenso , Oócitos/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Quinase 1 Polo-Like
9.
Reprod Biol Endocrinol ; 11: 119, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24378208

RESUMO

BACKGROUND: Maternal diabetes mellitus not only has severe deleterious effects on fetal development, but also it affects transmission to the next generation. However, the underlying mechanisms for these effects are still not clear. METHODS: We investigated the methylation patterns and expressions of the imprinted genes Peg3, Snrpn, and H19 in mid-gestational placental tissues and on the whole fetus utilizing the streptozotocin (STZ)-induced hyperglycemic mouse model for quantitative analysis of methylation by PCR and quantitative real-time PCR. The protein expression of Peg3 was evaluated by Western blot. RESULTS: We found that the expression of H19 was significantly increased, while the expression of Peg3 was significantly decreased in dpc10.5 placentas of diabetic mice. We further found that the methylation level of Peg3 was increased and that of H19 was reduced in dpc10.5 placentas of diabetic mice. When pronuclear embryos of normal females were transferred to normal/diabetic (NN/ND) pseudopregnant females, the methylation and expression of Peg3 in placentas was also clearly altered in the ND group compared to the NN group. However, when the pronuclear embryos of diabetic female were transferred to normal pesudopregnant female mice (DN), the methylation and expression of Peg3 and H19 in dpc10.5 placentas was similar between the two groups. CONCLUSIONS: We suggest that the effects of maternal diabetes on imprinted genes may primarily be caused by the adverse uterus environment.


Assuntos
Diabetes Mellitus/genética , Desenvolvimento Fetal/genética , Impressão Genômica , Gravidez em Diabéticas/genética , Útero/metabolismo , Animais , Western Blotting , Metilação de DNA , Feminino , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Placenta/metabolismo , Gravidez , Gravidez em Diabéticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Centrais de snRNP/genética , Proteínas Centrais de snRNP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA