Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903058

RESUMO

In this study, a newly developed high-strength cast Fe81Cr15V3C1 (wt%) steel with a high resistance against dry abrasion and chloride-induced pitting corrosion is presented. The alloy was synthesized through a special casting process that yielded high solidification rates. The resulting fine, multiphase microstructure is composed of martensite, retained austenite and a network of complex carbides. This led to a very high compressive strength (>3800 MPa) and tensile strength (>1200 MPa) in the as-cast state. Furthermore, a significantly higher abrasive wear resistance in comparison to the conventional X90CrMoV18 tool steel was determined for the novel alloy under very harsh wear conditions (SiC, α-Al2O3). Regarding the tooling application, corrosion tests were conducted in a 3.5 wt.% NaCl solution. Potentiodynamic polarization curves demonstrated a similar behavior during the long-term testing of Fe81Cr15V3C1 and the X90CrMoV18 reference tool steel, though both steels revealed a different nature of corrosion degradation. The novel steel is less susceptible to local degradation, especially pitting, due to the formation of several phases that led to the development of a less dangerous form of destruction: galvanic corrosion. In conclusion, this novel cast steel offers a cost- and resource-efficient alternative to conventionally wrought cold-work steels, which are usually required for high-performance tools under highly abrasive as well as corrosive conditions.

2.
J Funct Biomater ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826893

RESUMO

Commercially available titanium alloys such as Ti-6Al-4V are established in clinical use as load-bearing bone implant materials. However, concerns about the toxic effects of vanadium and aluminum have prompted the development of Al- and V-free ß-Ti alloys. Herein, a new alloy composed of non-toxic elements, namely Ti-18Mo-6Nb-5Ta (wt%), has been fabricated by arc melting. The resulting single ß-phase alloy shows improved mechanical properties (Young's modulus and hardness) and similar corrosion behavior in simulated body fluid when compared with commercial Ti-6Al-4V. To increase the cell proliferation capability of the new biomaterial, the surface of Ti-18Mo-6Nb-5Ta was modified by electrodepositing calcium phosphate (CaP) ceramic layers. Coatings with a Ca/P ratio of 1.47 were obtained at pulse current densities, -jc, of 1.8-8.2 mA/cm2, followed by 48 h of NaOH post-treatment. The thickness of the coatings has been measured by scanning electron microscopy from an ion beam cut, resulting in an average thickness of about 5 µm. Finally, cytocompatibility and cell adhesion have been evaluated using the osteosarcoma cell line Saos-2, demonstrating good biocompatibility and enhanced cell proliferation on the CaP-modified Ti-18Mo-6Nb-5Ta material compared with the bare alloy, even outperforming their CaP-modified Ti-6-Al-4V counterparts.

3.
ACS Appl Mater Interfaces ; 14(1): 439-451, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34942074

RESUMO

Additive manufacturing is a promising technology for the fabrication of customized implants with complex geometry. The objective of this study was to investigate the initial cell-material interaction of degradable Fe-30Mn-1C-0.02S stent structures in comparison to conventional 316L as a reference, both processed by laser powder bed fusion. FeMn-based alloys have comparable mechanical properties with clinically applied AISI 316L for a corrosion-resistant stent material. Different corrosion stages of the as-built Fe-30Mn-1C-0.02S stent surfaces were simulated by pre-conditioning in DMEM under cell culture conditions for 2 h, 7 days, and 28 days. Human umbilical vein endothelial cells (HUVECs) were directly seeded onto the pre-conditioned samples, and cell viability, adherence, and morphology were analyzed. These studies were accompanied by measurements of iron and manganese ion release and Auger electron spectroscopy to evaluate the influence of corrosion products and degradation on the cells. In the initial phase (2 h of pre-conditioning), HUVECs were able to attach but the cell number decreased over the cultivation period of 14 days and the CD31 staining pattern of intercellular contacts was disordered. At later time points of corrosion (7 and 28 days of pre-conditioning), CD31 staining was distinctly located at the intercellular contacts, and the cell density increased after seeding and was stable for up to 14 days. Formation of a complex degradation layer, which had a composition and thickness dependent on the pre-conditioning time, led to a reduced ion release and finally showed a positive effect on cell survival. Concluding, our data suggest the suitability of Fe-30Mn-1C-0.02S for in vivo applications.


Assuntos
Materiais Biocompatíveis/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ferro/metabolismo , Lasers , Manganês/metabolismo , Materiais Biocompatíveis/química , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/química , Humanos , Íons/química , Íons/metabolismo , Ferro/química , Manganês/química , Teste de Materiais
4.
Pharmaceutics ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847150

RESUMO

The proteasome inhibitor bortezomib (BZM) is one of the most potent anti-cancer drugs in the therapy of multiple myeloma. In this study, an adhesive drug delivery system (DDS) for BZM was developed. Therefore, we extended the present DDS concept of polyelectrolyte complex (PEC) nanoparticle (NP) based on electrostatic interactions between charged drug and polyelectrolyte (PEL) to a DDS concept involving covalent bonding between PEL and uncharged drugs. For this purpose, 3,4-dihydroxyphenyl acetic acid (DOPAC) was polymerized via an oxidatively induced coupling reaction. This novel chemo-reactive polyanion PDOPAC is able to temporarily bind boronic acid groups of BZM via its catechol groups, through esterification. PDOPAC was admixed to poly(l-glutamic acid) (PLG) and poly(l-lysine) (PLL) forming a redispersible PEC NP system after centrifugation, which is advantageous for further colloid and BZM loading processing. It was found that the loading capacity (LC) strongly depends on the PDOPAC and catechol content in the PEC NP. Furthermore, the type of loading and the net charge of the PEC NP affect LC and the residual content (RC) after release. Release experiments of PDOPAC/PEC coatings were performed at medically relevant bone substitute materials (calcium phosphate cement and titanium niobium alloy) whereby the DDS worked independently of the surface properties. Additionally, in contrast to electrostatically based drug loading the release behavior of covalently bound, uncharged BZM is independent of the ionic strength (salt content) in the release medium.

5.
Mater Sci Eng C Mater Biol Appl ; 108: 110425, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923935

RESUMO

Beta-type Ti-based alloys are promising new materials for bone implants owing to their excellent mechanical biofunctionality and biocompatibility. For treatment of fractures in case of systemic diseases like osteoporosis the generation of implant surfaces which actively support the problematic bone healing is a most important aspect. This work aimed at developing suitable approaches for electrodeposition of Sr-substituted hydroxyapatite (Srx-HAp) coatings onto Ti-45Nb. Potentiodynamic polarization measurements in electrolytes with 1.67 mmol/L Ca(NO3)2, which was substituted by 0, 10, 50 and 100% Sr(NO3)2, and 1 mmol/L NH4H2PO4 at 333 K revealed the basic reaction steps for OH- and PO43- formation needed for the chemical precipitation of Srx-HAp. Studies under potentiostatic control confirmed that partial or complete substitution of Ca2+- by Sr2+-ions in solution has a significant effect on the complex reaction process. High Sr2+-ion contents yield intermediate phases and a subsequent growth of more refined Srx-HAp coatings. Upon galvanostatic pulse-deposition higher reaction rates are controlled and in all electrolytes very fine needle-like crystalline coatings are obtained. With XRD the incorporation of Sr-species in the hexagonal HAp lattice is evidenced. Coatings formed in electrolytes with 10 and 50% Sr-nitrate were chemically analyzed with EDX mapping and GD-OES depth profiling. Only a fraction of the Sr-ions in solution is incorporated into the Srx-HAp coatings. Therein, the Sr-distribution is laterally homogeneous but non-homogeneous along the cross-section. Increasing Sr-content retards the coating thickness growth. Most promising coatings formed in the electrolyte with 10% Sr-nitrate were employed for Ca, P and Sr release analysis in Tris-Buffered Saline (150 mM NaCl, pH 7.6) at 310 K. At a sample surface: solution volume ratio of 1:200, after 24 h the amount of released Sr-ions was about 30-35% of that determined in the deposited Srx-HAp coating. In vitro studies with human bone marrow stromal cells (hBMSC) revealed that the released Sr-ions led to a significantly enhanced cell proliferation and osteogenic differentiation and that the Sr-HAp surface supported cell adhesion indicating its excellent cytocompatibility.


Assuntos
Ligas/química , Durapatita/química , Galvanoplastia/métodos , Estrôncio/química , Ligas/efeitos adversos , Durapatita/efeitos adversos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos
6.
Mater Sci Eng C Mater Biol Appl ; 104: 109933, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499966

RESUMO

Osteoporotic bone represents - particularly in case of fractures - difficult conditions for its regeneration. In the present study, the focus was put on a degradable bone substitute material of gelatin-modified calcium and strontium phosphates facing the special demands of osteoporotic bone. The release of strontium ions from the material ought to stimulate osteoblastogenesis either direct by ion release or indirect after material resorption by increased presence and activity of osteoclasts, which subsequently stimulate osteoblasts. A new porous material was produced from calcium phosphate, strontium phosphate and a mixed phase of calcium/strontium phosphate precipitated in presence of gelatin. Initially, ion release was analyzed in standard­calcium containing (2.0 mM) and low-calcium (0.4 mM) minimum essential medium. The cultivation of human peripheral blood mononuclear cells next to the material led to formation of osteoclast-like cells, able to migrate, fuse, and differentiate. Especially, the mixed gelatin-modified calcium/strontium phosphate allowed osteoclastogenesis as proven morphologically and by real-time quantitative polymerase chain reaction (RT-qPCR). It was precisely this material that led to the best osteoblastic reaction of human bone marrow stromal cells cultured on the material. The investigations of the bone substitute material indicate active involvement in the balance of cells of the bone morphogenetic unit.


Assuntos
Materiais Biocompatíveis/farmacologia , Fosfatos de Cálcio/farmacologia , Gelatina/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Fosfatos/farmacologia , Estrôncio/farmacologia , Animais , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Minerais/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Suínos
7.
PLoS One ; 13(2): e0193468, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29489907

RESUMO

INTRODUCTION: Treatment of osteoporotic fractures is still challenging and an urgent need exists for new materials, better adapted to osteoporotic bone by adjusted Young's modulus, appropriate surface modification and pharmaceuticals. MATERIALS AND METHODS: Titanium-40-niobium alloys, mechanically ground or additionally etched and titanium-6-aluminium-4-vanadium were analyzed in combination with brain-derived neurotrophic factor, acetylcholine and nicotine to determine their effects on human mesenchymal stem cells in vitro over 21 days using lactate dehydrogenase and alkaline phosphatase assays, live cell imaging and immunofluorescence microscopy. RESULTS: Cell number of human mesenchymal stem cells of osteoporotic donors was increased after 14 d in presence of ground titanium-40-niobium or titanium-6-aluminium-4-vanadium, together with brain-derived neurotrophic factor. Cell number of human mesenchymal stem cells of non osteoporotic donors increased after 21 d in presence of titanium-6-aluminium-4-vanadium without pharmaceuticals. No significant increase was measured for ground or etched titanium-40-niobium after 21 d. Osteoblast differentiation of osteoporotic donors was significantly higher than in non osteoporotic donors after 21 d in presence of etched, ground titanium-40-niobium or titanium-6-aluminium-4-vanadium accompanied by all pharmaceuticals tested. In presence of all alloys tested brain-derived neurotrophic factor, acetylcholine and nicotine increased differentiation of cells of osteoporotic donors and accelerated it in non osteoporotic donors. CONCLUSION: We conclude that ground titanium-40-niobium and brain-derived neurotrophic factor might be most suitable for subsequent in vivo testing.


Assuntos
Acetilcolina/farmacologia , Ligas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nicotina/farmacologia , Osteoporose/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fosfatase Alcalina/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Interações Medicamentosas , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA