Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12197, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806591

RESUMO

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Assuntos
Extremófilos , Ferro , Rubredoxinas , Ferro/metabolismo , Ferro/química , Extremófilos/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo , Simulação de Dinâmica Molecular , Temperatura
2.
J Am Chem Soc ; 145(37): 20389-20402, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37683125

RESUMO

Through nitrosylation of [Fe-S] proteins, or the chelatable iron pool, a dinitrosyl iron unit (DNIU) [Fe(NO)2] embedded in the form of low-molecular-weight/protein-bound dinitrosyl iron complexes (DNICs) was discovered as a metallocofactor assembled under inflammatory conditions with elevated levels of nitric oxide (NO) and superoxide (O2-). In an attempt to gain biomimetic insights into the unexplored transformations of the DNIU under inflammation, we investigated the reactivity toward O2- by a series of DNICs [(NO)2Fe(µ-MePyr)2Fe(NO)2] (1) and [(NO)2Fe(µ-SEt)2Fe(NO)2] (3). During the superoxide-induced conversion of DNIC 1 into DNIC [(K-18-crown-6-ether)2(NO2)][Fe(µ-MePyr)4(µ-O)2(Fe(NO)2)4] (2-K-crown) and a [Fe3+(MePyr)x(NO2)y(O)z]n adduct, stoichiometric NO monooxygenation yielding NO2- occurs without the transient formation of peroxynitrite-derived •OH/•NO2 species. To study the isoelectronic reaction of O2(g) and one-electron-reduced DNIC 1, a DNIC featuring an electronically localized {Fe(NO)2}9-{Fe(NO)2}10 electronic structure, [K-18-crown-6-ether][(NO)2Fe(µ-MePyr)2Fe(NO)2] (1-red), was successfully synthesized and characterized. Oxygenation of DNIC 1-red leads to the similar assembly of DNIC 2-K-crown, of which the electronic structure is best described as paramagnetic with weak antiferromagnetic coupling among the four S = 1/2 {FeIII(NO-)2}9 units and S = 5/2 Fe3+ center. In contrast to DNICs 1 and 1-red, DNICs 3 and [K-18-crown-6-ether][(NO)2Fe(µ-SEt)2Fe(NO)2] (3-red) display a reversible equilibrium of "3 + O2- ⇋ 3-red + O2(g)", which is ascribed to the covalent [Fe(µ-SEt)2Fe] core and redox-active [Fe(NO)2] unit. Based on this study, the supporting/bridging ligands in dinuclear DNIC 1/3 (or 1-red/3-red) control the selective monooxygenation of NO and redox interconversion between O2- and O2 during reaction with O2- (or O2).

3.
Angew Chem Int Ed Engl ; 62(43): e202309362, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37640689

RESUMO

Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.


Assuntos
Histidina , Ferro , Histidina/metabolismo , Ligantes , Catálise , Estresse Oxidativo
4.
Biochemistry ; 60(31): 2419-2424, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310123

RESUMO

The human mitochondrial protein, mitoNEET (mNT), belongs to the family of small [2Fe-2S] NEET proteins that bind their iron-sulfur clusters with a novel and characteristic 3Cys:1His coordination motif. mNT has been implicated in the regulation of lipid and glucose metabolisms, iron/reactive oxygen species homeostasis, cancer, and possibly Parkinson's disease. The geometric structure of mNT as a function of redox state and pH is critical for its function. In this study, we combine 57Fe nuclear resonance vibrational spectroscopy with density functional theory calculations to understand the novel properties of this important protein.


Assuntos
Cisteína/química , Ferro/química , Lisina/química , Proteínas Mitocondriais/química , Enxofre/química , Teoria da Densidade Funcional , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Vibração
5.
J Am Chem Soc ; 143(12): 4569-4584, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33730507

RESUMO

1s2p resonant inelastic X-ray scattering (1s2p RIXS) has proven successful in the determination of the differential orbital covalency (DOC, the amount of metal vs ligand character in each d molecular orbital) of highly covalent centrosymmetric iron environments including heme models and enzymes. However, many reactive intermediates have noncentrosymmetric environments, e.g., the presence of strong metal-oxo bonds, which results in the mixing of metal 4p character into the 3d orbitals. This leads to significant intensity enhancement in the metal K-pre-edge and as shown here, the associated 1s2p RIXS features, which impact their insight into electronic structure. Binuclear oxo bridged high spin Fe(III) complexes are used to determine the effects of 4p mixing on 1s2p RIXS spectra. In addition to developing the analysis of 4p mixing on K-edge XAS and 1s2p RIXS data, this study explains the selective nature of the 4p mixing that also enhances the analysis of L-edge XAS intensity in terms of DOC. These 1s2p RIXS biferric model studies enable new structural insight from related data on peroxo bridged biferric enzyme intermediates. The dimeric nature of the oxo bridged Fe(III) complexes further results in ligand-to-ligand interactions between the Fe(III) sites and angle dependent features just above the pre-edge that reflect the superexchange pathway of the oxo bridge. Finally, we present a methodology that enables DOC to be obtained when L-edge XAS is inaccessible and only 1s2p RIXS experiments can be performed as in many metalloenzyme intermediates in solution.


Assuntos
Compostos Férricos/química , Teoria Quântica , Eletrônica , Estrutura Molecular , Espalhamento de Radiação , Raios X
6.
Nat Commun ; 12(1): 1086, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597529

RESUMO

The dynamics of photodissociation and recombination in heme proteins represent an archetypical photochemical reaction widely used to understand the interplay between chemical dynamics and reaction environment. We report a study of the photodissociation mechanism for the Fe(II)-S bond between the heme iron and methionine sulfur of ferrous cytochrome c. This bond dissociation is an essential step in the conversion of cytochrome c from an electron transfer protein to a peroxidase enzyme. We use ultrafast X-ray solution scattering to follow the dynamics of Fe(II)-S bond dissociation and 1s3p (Kß) X-ray emission spectroscopy to follow the dynamics of the iron charge and spin multiplicity during bond dissociation. From these measurements, we conclude that the formation of a triplet metal-centered excited state with anti-bonding Fe(II)-S interactions triggers the bond dissociation and precedes the formation of the metastable Fe high-spin quintet state.


Assuntos
Citocromos c/metabolismo , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Metais/metabolismo , Metionina/metabolismo , Citocromos c/química , Transporte de Elétrons/efeitos da radiação , Compostos Ferrosos/química , Heme/química , Heme/metabolismo , Ferro/química , Metais/química , Metionina/química , Simulação de Dinâmica Molecular , Fotólise , Espectrometria por Raios X
7.
J Am Chem Soc ; 141(14): 5942-5960, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30860832

RESUMO

High-valent ferryl species (e.g., (Por)FeIV═O, Cmpd-II) are observed or proposed key oxidizing intermediates in the catalytic cycles of heme-containing enzymes (P-450s, peroxidases, catalases, and cytochrome c oxidase) involved in biological respiration and oxidative metabolism. Herein, various axially ligated iron(IV)-oxo complexes were prepared to examine the influence of the identity of the base. These were generated by addition of various axial ligands (1,5-dicyclohexylimidazole (DCHIm), a tethered-imidazole system, and sodium derivatives of 3,5-dimethoxyphenolate and imidazolate). Characterization was carried out via UV-vis, electron paramagnetic resonance (EPR), 57Fe Mössbauer, Fe X-ray absorption (XAS), and 54/57Fe resonance Raman (rR) spectroscopies to confirm their formation and compare the axial ligand perturbation on the electronic and geometric structures of these heme iron(IV)-oxo species. Mössbauer studies confirmed that the axially ligated derivatives were iron(IV) and six-coordinate complexes. XAS and 54/57Fe rR data correlated with slight elongation of the iron-oxo bond with increasing donation from the axial ligands. The first reported synthetic H-bonded iron(IV)-oxo heme systems were made in the presence of the protic Lewis acid, 2,6-lutidinium triflate (LutH+), with (or without) DCHIm. Mössbauer, rR, and XAS spectroscopic data indicated the formation of molecular Lewis acid ferryl adducts (rather than full protonation). The reduction potentials of these novel Lewis acid adducts were bracketed through addition of outer-sphere reductants. The oxidizing capabilities of the ferryl species with or without Lewis acid vary drastically; addition of LutH+ to F8Cmpd-II (F8 = tetrakis(2,6-difluorophenyl)porphyrinate) increased its reduction potential by more than 890 mV, experimentally confirming that H-bonding interactions can increase the reactivity of ferryl species.


Assuntos
Elétrons , Heme/química , Ferro/química , Ácidos de Lewis/química , Imidazóis/química , Ligantes , Modelos Moleculares , Conformação Molecular
8.
J Am Chem Soc ; 139(12): 4306-4309, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28291336

RESUMO

[FeFe]-hydrogenases catalyze the reversible reduction of protons to molecular hydrogen with extremely high efficiency. The active site ("H-cluster") consists of a [4Fe-4S]H cluster linked through a bridging cysteine to a [2Fe]H subsite coordinated by CN- and CO ligands featuring a dithiol-amine moiety that serves as proton shuttle between the protein proton channel and the catalytic distal iron site (Fed). Although there is broad consensus that an iron-bound terminal hydride species must occur in the catalytic mechanism, such a species has never been directly observed experimentally. Here, we present FTIR and nuclear resonance vibrational spectroscopy (NRVS) experiments in conjunction with density functional theory (DFT) calculations on an [FeFe]-hydrogenase variant lacking the amine proton shuttle which is stabilizing a putative hydride state. The NRVS spectra unequivocally show the bending modes of the terminal Fe-H species fully consistent with widely accepted models of the catalytic cycle.


Assuntos
Hidrogenase/química , Proteínas Ferro-Enxofre/química , Ferro/química , Hidrogenase/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Água/metabolismo
9.
Inorg Chem ; 55(14): 6866-72, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27387959

RESUMO

We used a novel experimental setup to conduct the first synchrotron-based (61)Ni Mössbauer spectroscopy measurements in the energy domain on Ni coordination complexes and metalloproteins. A representative set of samples was chosen to demonstrate the potential of this approach. (61)NiCr2O4 was examined as a case with strong Zeeman splittings. Simulations of the spectra yielded an internal magnetic field of 44.6 T, consistent with previous work by the traditional (61)Ni Mössbauer approach with a radioactive source. A linear Ni amido complex, (61)Ni{N(SiMe3)Dipp}2, where Dipp = C6H3-2,6-(i)Pr2, was chosen as a sample with an "extreme" geometry and large quadrupole splitting. Finally, to demonstrate the feasibility of metalloprotein studies using synchrotron-based (61)Ni Mössbauer spectroscopy, we examined the spectra of (61)Ni-substituted rubredoxin in reduced and oxidized forms, along with [Et4N]2[(61)Ni(SPh)4] as a model compound. For each of the above samples, a reasonable spectrum could be obtained in ∼1 d. Given that there is still room for considerable improvement in experimental sensitivity, synchrotron-based (61)Ni Mössbauer spectroscopy appears to be a promising alternative to measurements with radioactive sources.


Assuntos
Níquel/química , Espectroscopia de Mossbauer/métodos , Síncrotrons , Magnetismo
10.
Chem Commun (Camb) ; 50(88): 13469-72, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25237680

RESUMO

A new route to iron carbonyls has enabled synthesis of (57)Fe-labeled [NiFe] hydrogenase mimic (OC)3(57)Fe(pdt)Ni(dppe). Its study by nuclear resonance vibrational spectroscopy revealed Ni-(57)Fe vibrations, as confirmed by calculations. The modes are absent for [(OC)3(57)Fe(pdt)Ni(dppe)](+), which lacks Ni-(57)Fe bonding, underscoring the utility of the analyses in identifying metal-metal interactions.


Assuntos
Complexos de Coordenação/síntese química , Hidrogenase/química , Ferro/química , Modelos Moleculares , Níquel/química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/metabolismo , Compostos de Ferro/química , Isótopos de Ferro/química , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA