Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1210092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521921

RESUMO

Susceptibility of the reproductive system to temperature fluctuations is a recurrent problem for crop production under a changing climate. The damage is complex as multiple processes in male and female gamete formation are affected, but in general, particularly pollen production is impaired. Here, the impact of short periods of elevated temperature on male meiosis of tomato (Solanum lycopersicon L.) is reported. Meiocytes in early stage flower buds exposed to heat stress (>35°C) exhibit impaired homolog synapsis resulting in partial to complete omission of chiasmata formation. In the absence of chiasmata, univalents segregate randomly developing unbalanced tetrads and polyads resulting in aneuploid spores. However, most heat-stressed meiotic buds primarily contain balanced dyads, indicating a propensity to execute meiotic restitution. With most meiocytes exhibiting a complete loss of chiasma formation and concomitantly showing a mitotic-like division, heat stress triggers first division restitution resulting in clonal spores. These findings corroborate with the plasticity of male meiosis under heat and establish a natural route for the induction of sexual polyploidization in plants and the engineering of clonal seed.

2.
J Exp Bot ; 74(12): 3503-3517, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36928121

RESUMO

Somatic hybrids between distant species offer a remarkable model to study genomic recombination events after mitochondrial fusion. Recently, we described highly chimeric mitogenomes in two somatic hybrids between the Solanaceae Nicotiana tabacum and Hyoscyamus niger resulting from interparental homologous recombination. To better examine the recombination map in somatic hybrid mitochondria, we developed a more sensitive bioinformatic strategy to detect recombination activity based on high-throughput sequencing without assembling the hybrid mitogenome. We generated a new intergeneric somatic hybrid between N. tabacum and Physochlaina orientalis, and re-analyzed the somatic hybrids that we previously generated. We inferred 213 homologous recombination events across repeats of 2.1 kb on average. Most of them (~80%) were asymmetrical, consistent with the break-induced replication pathway. Only rare (2.74%) non-homologous events were detected. Interestingly, independent events frequently occurred in the same regions within and across somatic hybrids, suggesting the existence of recombination hotspots in plant mitogenomes. Break-induced replication is the main pathway of interparental recombination in somatic hybrid mitochondria. Findings of this study are relevant to mitogenome editing assays and to mechanistic aspects of DNA integration following mitochondrial DNA horizontal transfer events.


Assuntos
Transferência Genética Horizontal , Mitocôndrias , Mitocôndrias/genética , Nicotiana/genética , Reparo do DNA , Recombinação Homóloga
3.
Front Plant Sci ; 13: 837441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845677

RESUMO

A survey of plant-based wastes identified sunflower (Helianthus annuus) bark extract (SBE), produced via twin-screw extrusion, as a potential biostimulant. The addition of SBE to Arabidopsis (Arabidopsis thaliana) seedlings cultured in vitro showed a dose-dependent response, with high concentrations causing severe growth inhibition. However, when priming seeds with SBE, a small but significant increase in leaf area was observed at a dose of 0.5 g of lyophilized powder per liter. This optimal concentration of SBE in the culturing medium alleviated the growth inhibition caused by 100 mM NaCl. The recovery in shoot growth was accompanied by a pronounced increase in photosynthetic pigment levels and a stabilization of osmotic homeostasis. SBE-primed leaf discs also showed a similar protective effect. SBE mitigated salt stress by reducing the production of reactive oxygen species (ROS) (e.g., hydrogen peroxide) by about 30% and developing more expanded true leaves. This reduction in ROS levels was due to the presence of antioxidative agents in SBE and by activating ROS-eliminating enzymes. Polyphenols, carbohydrates, proteins, and other bioactive compounds detected in SBE may have contributed to the cellular redox homeostasis in salt-stressed plants, thus promoting early leaf development by relieving shoot apical meristem arrest. Sunflower stalks from which SBE is prepared can therefore potentially be valorized as a source to produce biostimulants for improving salt stress tolerance in crops.

4.
Genes (Basel) ; 12(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916197

RESUMO

Meiosis drives reciprocal genetic exchanges and produces gametes with halved chromosome number, which is important for the genetic diversity, plant viability, and ploidy consistency of flowering plants. Alterations in chromosome dynamics and/or cytokinesis during meiosis may lead to meiotic restitution and the formation of unreduced microspores. In this study, we isolated an Arabidopsis mutant male meiotic restitution 1 (mmr1), which produces a small subpopulation of diploid or polyploid pollen grains. Cytological analysis revealed that mmr1 produces dyads, triads, and monads indicative of male meiotic restitution. Both homologous chromosomes and sister chromatids in mmr1 are separated normally, but chromosome condensation at metaphase I is slightly affected. The mmr1 mutant displayed incomplete meiotic cytokinesis. Supportively, immunostaining of the microtubular cytoskeleton showed that the spindle organization at anaphase II and mini-phragmoplast formation at telophase II are aberrant. The causative mutation in mmr1 was mapped to chromosome 1 at the chromatin regulator Male Meiocyte Death 1 (MMD1/DUET) locus. mmr1 contains a C-to-T transition at the third exon of MMD1/DUET at the genomic position 2168 bp from the start codon, which causes an amino acid change G618D that locates in the conserved PHD-finger domain of histone binding proteins. The F1 progenies of mmr1 crossing with knockout mmd1/duet mutant exhibited same meiotic defects and similar meiotic restitution rate as mmr1. Taken together, we here report a hypomorphic mmd1/duet allele that typically shows defects in microtubule organization and cytokinesis.


Assuntos
Substituição de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Arabidopsis/genética , Segregação de Cromossomos , Cromossomos de Plantas/genética , Meiose , Dedos de Zinco PHD , Poliploidia
5.
Plant Commun ; 1(6): 100093, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33367262

RESUMO

Hybridization is a creative evolutionary force, increasing genomic diversity and facilitating adaptation and even speciation. Hybrids often face significant challenges to establishment, including reduced fertility that arises from genomic incompatibilities between their parents. Whole-genome duplication in hybrids (allopolyploidy) can restore fertility, cause immediate phenotypic changes, and generate reproductive isolation. Yet the survival of polyploid lineages is uncertain, and few studies have compared the performance of recently formed allopolyploids and their parents under field conditions. Here, we use natural and synthetically produced hybrid and polyploid monkeyflowers (Mimulus spp.) to study how polyploidy contributes to the fertility, reproductive isolation, phenotype, and performance of hybrids in the field. We find that polyploidization restores fertility and that allopolyploids are reproductively isolated from their parents. The phenotype of allopolyploids displays the classic gigas effect of whole-genome duplication, in which plants have larger organs and are slower to flower. Field experiments indicate that survival of synthetic hybrids before and after polyploidization is intermediate between that of the parents, whereas natural hybrids have higher survival than all other taxa. We conclude that hybridization and polyploidy can act as sources of genomic novelty, but adaptive evolution is key in mediating the establishment of young allopolyploid lineages.


Assuntos
Evolução Molecular , Fertilidade/genética , Duplicação Gênica , Genoma de Planta , Hibridização Genética , Mimulus/genética , Poliploidia , Fenótipo , Isolamento Reprodutivo
6.
Methods Mol Biol ; 2061: 331-346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31583670

RESUMO

Polyploidization or whole genome duplication (WGD) is one of the main forces driving plant genome evolution and biodiversity with major implications for plant breeding and crop improvement. In nature, de novo formation of polyploid plant genomes most likely occurs through a modification of the sexual reproductive pathway. By interfering with reproductive genome stability, for example, via induction of meiotic restitution, diploid or polyploid gametes are ectopically formed that may participate in fertilization to yield polyploid offspring. This mechanism of WGD is generally referred to as sexual polyploidization. Considering the central role of sexual polyploidization in speciation, genome evolution and crop breeding, we provide here a set of methodologies to induce and characterize 2n pollen grain formation in plants. Using Arabidopsis thaliana as a model, we outline two different methods, that is, one chemical and one environmental, to induce male meiotic restitution and high frequency 2n pollen grain formation. In addition, we provide a set of simple and straightforward techniques to characterize alterations in male meiotic cell division and gametophytic ploidy stability underpinning 2n pollen formation. This comprehensive toolbox is applicable in a broad range of plant species to enable quick induction and assessment of 2n gamete formation during plant male reproduction.


Assuntos
Arabidopsis/genética , Diploide , Pólen/genética , Resposta ao Choque Frio/genética , Genoma de Planta , Meiose/genética , Poliploidia , Esporos , Temperatura
7.
Plant Physiol ; 179(1): 74-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30301776

RESUMO

Polyploidization has played a key role in plant breeding and crop improvement. Although its potential to increase biomass yield is well described, the effect of polyploidization on biomass composition has largely remained unexplored. Here, we generated a series of Arabidopsis (Arabidopsis thaliana) plants with different somatic ploidy levels (2n, 4n, 6n, and 8n) and performed rigorous phenotypic characterization. Kinematic analysis showed that polyploids developed slower compared to diploids; however, tetra- and hexaploids, but not octaploids, generated larger rosettes due to delayed flowering. In addition, morphometric analysis of leaves showed that polyploidy affected epidermal pavement cells, with increased cell size and reduced cell number per leaf blade with incrementing ploidy. However, the inflorescence stem dry weight was highest in tetraploids. Cell wall characterization revealed that the basic somatic ploidy level negatively correlated with lignin and cellulose content, and positively correlated with matrix polysaccharide content (i.e. hemicellulose and pectin) in the stem tissue. In addition, higher ploidy plants displayed altered sugar composition. Such effects were linked to the delayed development of polyploids. Moreover, the changes in polyploid cell wall composition promoted saccharification yield. The results of this study indicate that induction of polyploidy is a promising breeding strategy to further tailor crops for biomass production.


Assuntos
Arabidopsis/genética , Desenvolvimento Vegetal/genética , Poliploidia , Arabidopsis/crescimento & desenvolvimento , Biomassa , Parede Celular/genética , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Fenótipo , Folhas de Planta
8.
Plant Syst Evol ; 303(8): 1093-1108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081576

RESUMO

Polyploidy is one of the most important evolutionary processes in plants. In natural populations, polyploids usually emerge from unreduced gametes which either fuse with reduced ones, resulting in triploid offspring (triploid bridge), or with other unreduced gametes, resulting in tetraploid embryos. The frequencies of these two pathways, and male versus female gamete contributions, however, are largely unexplored. Ranunculus kuepferi occurs with diploid, triploid and autotetraploid cytotypes in the Alps, whereby diploids are mostly sexual, while tetraploids are facultative apomicts. To test for the occurrence of polyploidization events by triploid bridge, we investigated 551 plants of natural populations via flow cytometric seed screening. We assessed ploidy shifts in the embryo to reconstruct female versus male gamete contributions to polyploid embryo and/or endosperm formation. Seed formation via unreduced egg cells (BIII hybrids) occurred in all three cytotypes, while only in one case both gametes were unreduced. Polyploids further formed seeds with reduced, unfertilized egg cells (polyhaploids and aneuploids). Pollen was highly variable in diameter, but only pollen >27 µm was viable, whereby diploids produced higher proportions of well-developed pollen. Pollen size was not informative for the formation of unreduced pollen. These results suggest that a female triploid bridge via unreduced egg cells is the major pathway toward polyploidization in R. kuepferi, maybe as a consequence of constraints of endosperm development. Triploids resulting from unreduced male gametes were not observed, which explains the lack of obligate sexual tetraploid individuals and populations. Unreduced egg cell formation in diploids represents the first step toward apomixis.

9.
Plant J ; 89(4): 730-745, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862530

RESUMO

The evolutionarily conserved 12-subunit RNA polymerase II (Pol II) is a central catalytic component that drives RNA synthesis during the transcription cycle that consists of transcription initiation, elongation, and termination. A diverse set of general transcription factors, including a multifunctional TFIIF, govern Pol II selectivity, kinetic properties, and transcription coupling with posttranscriptional processes. Here, we show that TFIIF of Arabidopsis (Arabidopsis thaliana) resembles the metazoan complex that is composed of the TFIIFα and TFIIFß polypeptides. Arabidopsis has two TFIIFß subunits, of which TFIIFß1/MAN1 is essential and TFIIFß2/MAN2 is not. In the partial loss-of-function mutant allele man1-1, the winged helix domain of Arabidopsis TFIIFß1/MAN1 was dispensable for plant viability, whereas the cellular organization of the shoot and root apical meristems were abnormal. Forward genetic screening identified an epistatic interaction between the largest Pol II subunit nrpb1-A325V variant and the man1-1 mutation. The suppression of the man1-1 mutant developmental defects by a mutation in Pol II suggests a link between TFIIF functions in Arabidopsis transcription cycle and the maintenance of cellular organization in the shoot and root apical meristems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/deficiência , Fatores de Transcrição TFII/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição TFII/genética
10.
BMC Plant Biol ; 16: 1, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728271

RESUMO

BACKGROUND: The in vivo determination of the cell-specific chromosome number provides a valuable tool in several aspects of plant research. However, current techniques to determine the endosystemic ploidy level do not allow non-destructive, cell-specific chromosome quantification. Particularly in the gametophytic cell lineages, which are physically encapsulated in the reproductive organ structures, direct in vivo ploidy determination has been proven very challenging. Using Arabidopsis thaliana as a model, we here assess the applicability of recombinant CENH3-GFP reporters for the labeling of the cell's chromocenters and for the monitoring of the gametophytic and somatic chromosome number in vivo. RESULTS: By modulating expression of a CENH3-GFP reporter cassette using different promoters, we isolated two reporter lines that allow for a clear and highly specific labeling of centromeric chromosome regions in somatic and gametophytic cells respectively. Using polyploid plant series and reproductive mutants, we demonstrate that the pWOX2-CENH3-GFP recombinant fusion protein allows for the determination of the gametophytic chromosome number in both male and female gametophytic cells, and additionally labels centromeric regions in early embryo development. Somatic centromere labeling through p35S-CENH3-GFP shows a maximum of ten centromeric dots in young dividing tissues, reflecting the diploid chromosome number (2x = 10), and reveals a progressive decrease in GFP foci frequency throughout plant development. Moreover, using chemical and genetic induction of endomitosis, we demonstrate that CENH3-mediated chromosome labeling provides an easy and valuable tool for the detection and characterization of endomitotic polyploidization events. CONCLUSIONS: This study demonstrates that the introgression of the pWOX2-CENH3-GFP reporter construct in Arabidopsis thaliana provides an easy and reliable methodology for determining the chromosome number in developing male and female gametes, and during early embryo development. Somatically expressed CENH3-GFP reporters, on the other hand, constitute a valuable tool to quickly determine the basic somatic ploidy level in young seedlings at the individual cell level and to detect and to quantify endomitotic polyploidization events in a non-destructive, microscopy-based manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Células Germinativas Vegetais , Histonas/genética , Ploidias , Centrômero , Cromossomos de Plantas , Gametogênese Vegetal , Marcadores Genéticos , Células Germinativas Vegetais/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Meiose
11.
Plant Physiol Biochem ; 83: 151-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25146688

RESUMO

The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones.


Assuntos
Acetilglucosamina/metabolismo , Ciclo Celular , Histonas/metabolismo , Lectinas/metabolismo , Nicotiana/metabolismo
12.
Plant J ; 80(3): 449-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25146886

RESUMO

Aurora is an evolutionary conserved protein kinase family involved in monitoring of chromosome segregation via phosphorylation of different substrates. In plants, however, the involvement of Aurora proteins in meiosis and in sensing microtubule attachment remains to be proven, although the downstream components leading to the targeting of spindle assembly checkpoint signals to anaphase-promoting complex have been described. To analyze the three members of Aurora family (AtAurora1, -2, and -3) of Arabidopsis we employed different combinations of T-DNA insertion mutants and/or RNAi transformants. Meiotic defects and the formation of unreduced pollen were revealed including plants with an increased ploidy level. The effect of reduced expression of Aurora was mimicked by application of the ATP-competitive Aurora inhibitor II. In addition, strong overexpression of any member of the AtAurora family is not possible. Only tagged or truncated forms of Aurora kinases can be overexpressed. Expression of truncated AtAurora1 resulted in a high number of aneuploids in Arabidopsis, while expression of AtAurora1-TAPi construct in tobacco resulted in 4C (possible tetraploid) progeny. In conclusion, our data demonstrate an essential role of Aurora kinases in the monitoring of meiosis in plants.


Assuntos
Arabidopsis/enzimologia , Aurora Quinases/metabolismo , Regulação Enzimológica da Expressão Gênica , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aurora Quinases/genética , Segregação de Cromossomos , Flores/citologia , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Meiose , Microtúbulos/metabolismo , Mitose , Família Multigênica , Mutagênese Insercional , Fenótipo , Fosforilação , Plantas Geneticamente Modificadas , Poliploidia , Plântula/citologia , Plântula/enzimologia , Plântula/genética , Sementes/citologia , Sementes/enzimologia , Sementes/genética
13.
Front Plant Sci ; 5: 279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987397

RESUMO

Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

14.
Plant Reprod ; 26(2): 65-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23686220

RESUMO

Pollen size is often used as a biological parameter to estimate the ploidy and viability of mature pollen grains. In general, pollen size quantification is performed one- or two-dimensionally using image-based diameter measurements. As these approaches are elaborate and time consuming, alternative approaches that enable a quick, reliable analysis of pollen size are highly relevant for plant research. In this study, we present the volume-based particle size analysis technique as an alternative method to characterize mature pollen. Based on a comparative assay using different plant species (including tomato, oilseed rape, kiwifruit, clover, among others), we found that volume-based pollen size measurements are not biased by the pollen shape or position and substantially reduce non-biological variation, allowing a more accurate determination of the actual pollen size. As such, volume-based particle size techniques have a strong discriminative power in detecting pollen size differences caused by alterations in the gametophytic ploidy level and therefore allow for a quick and reliable estimation of the somatic ploidy level. Based on observations in Arabidopsis thaliana gametophytic mutants and differentially reproducing Boechera polyantha lines, we additionally found that volume-based pollen size analysis provides quantitative and qualitative data about alterations in male sporogenesis, including aneuploid and diploid gamete formation. Volume-based pollen size analysis therefore not only provides a quick and easy methodology to determine the somatic ploidy level of flowering plants, but can also be used to determine the mode of reproduction and to quantify the level of diplogamete formation.


Assuntos
Gametogênese Vegetal/genética , Magnoliopsida/citologia , Ploidias , Pólen/citologia , Alelos , Arabidopsis/citologia , Arabidopsis/genética , Brassica/citologia , Brassica/genética , Tamanho Celular , Diploide , Citometria de Fluxo , Magnoliopsida/genética , Mutação , Pólen/genética , Poliploidia , Tetraploidia
15.
J Exp Bot ; 64(8): 2345-58, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23580753

RESUMO

Sexual polyploidization through the formation and functioning of 2n gametes is considered a major route for plant speciation and diversification. The cellular mechanism underlying 2n gamete formation mostly involves a restitution of the meiotic cell cycle, generating dyads and triads instead of tetrad meiotic end-products. As an alternative mechanism, the tomato mutant pmcd1 (for pre-meiotic cytokinesis defect 1), which generates diploid gametes through the ectopic induction of pre-meiotic endomitosis, is presented here. Using cytological approaches, it is demonstrated that male pmcd1 meiocyte initials exhibit clear alterations in cell cycle progression and cell plate formation, and consequently form syncytial cells that display different grades of cellular and/or nuclear fusion. In addition, it was found that other somatic tissue types (e.g. cotyledons and petals) also display occasional defects in cell wall formation and exhibit alterations in callose deposition, indicating that pmcd1 has a general defect in cell plate formation, most probably caused by alterations in callose biosynthesis. In a broader perspective, these findings demonstrate that defects in cytokinesis and cell plate formation may constitute a putative route for diplogamete formation and sexual polyploidization in plants.


Assuntos
Citocinese/genética , Diploide , Células Germinativas Vegetais/fisiologia , Mitose/genética , Solanum lycopersicum/genética , Tetraploidia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Glucanos/genética , Glucanos/fisiologia , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia
16.
New Phytol ; 198(1): 71-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23368793

RESUMO

Polyploidy and hybridization play major roles in plant evolution and reproduction. To investigate the reproductive effects of polyploidy and hybridization in Arabidopsis thaliana, we analyzed fertility of reciprocal pairs of F1 hybrid triploids, generated by reciprocally crossing 89 diploid accessions to a tetraploid Ler-0 line. All F1 hybrid triploid genotypes exhibited dramatically reduced ovule fertility, while variation in ovule number per silique was observed across different F1 triploid genotypes. These two reproductive traits were negatively correlated suggesting a trade-off between increased ovule number and ovule fertility. Furthermore, the ovule fertility of the F1 hybrid triploids displayed both hybrid dysgenesis and hybrid advantage (heterosis) effects. Strikingly, both reproductive traits (ovule fertility, ovule number) displayed epigenetic parent-of-origin effects between genetically identical reciprocal F1 hybrid triploid pairs. In some F1 triploid genotypes, the maternal genome excess F1 hybrid triploid was more fertile, whilst for other accessions the paternal genome excess F1 hybrid triploid was more fertile. Male gametogenesis was not significantly disrupted in F1 triploids. Fertility variation in the F1 triploid A. thaliana is mainly the result of disrupted ovule development. Overall, we demonstrate that in F1 triploid plants both ovule fertility and ovule number are subject to parent-of-origin effects that are genome dosage-dependent.


Assuntos
Arabidopsis/genética , Cruzamentos Genéticos , Hibridização Genética , Padrões de Herança/genética , Óvulo Vegetal/genética , Poliploidia , Autofertilização/genética , Arabidopsis/fisiologia , Diploide , Fertilidade , Genótipo , Vigor Híbrido/genética , Óvulo Vegetal/fisiologia , Pólen/genética , Sementes/genética
17.
Plant Cell ; 25(2): 387-403, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23404886

RESUMO

In sexually reproducing plants, the meiocyte-producing archesporal cell lineage is maintained at the diploid state to consolidate the formation of haploid gametes. In search of molecular factors that regulate this ploidy consistency, we isolated an Arabidopsis thaliana mutant, called enlarged tetrad2 (et2), which produces tetraploid meiocytes through the stochastic occurrence of premeiotic endomitosis. Endomitotic polyploidization events were induced by alterations in cell wall formation, and similar cytokinetic defects were sporadically observed in other tissues, including cotyledons and leaves. ET2 encodes GLUCAN SYNTHASE-LIKE8 (GSL8), a callose synthase that mediates the deposition of callose at developing cell plates, root hairs, and plasmodesmata. Unlike other gsl8 mutants, in which defects in cell plate formation are seedling lethal, cytokinetic defects in et2 predominantly occur in flowers and have little effect on vegetative growth and development. Similarly, mutations in STEROL METHYLTRANSFERASE2 (SMT2), a major sterol biosynthesis enzyme, also lead to weak cytokinetic defects, primarily in the flowers. In addition, SMT2 allelic mutants also generate tetraploid meiocytes through the ectopic induction of premeiotic endomitosis. These observations demonstrate that appropriate callose and sterol biosynthesis are required for maintaining the ploidy level of the premeiotic germ lineage and that subtle defects in cytokinesis may lead to diploid gametes and polyploid offspring.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Glucosiltransferases/genética , Metiltransferases/metabolismo , Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Flores/citologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Metiltransferases/genética , Mitose/genética , Mutação , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Esteróis/biossíntese , Esteróis/metabolismo , Tetraploidia
18.
New Phytol ; 198(3): 670-684, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23421646

RESUMO

In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization.


Assuntos
Meiose , Células Vegetais/fisiologia , Plantas/genética , Poliploidia , Evolução Biológica , Genes de Plantas , Genoma de Planta , Células Germinativas , Mitose , Pólen/fisiologia
19.
Mol Biol Rep ; 40(2): 1579-90, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23086301

RESUMO

The functional analysis of the TAPETUM DEVELOPMENT1-like analog Eg707 of oil palm was carried out in rice by over-expressing Eg707 under the control of a double cauliflower mosaic virus 35S promoter. Ectopic expression of Eg707 in rice induced dark green and matured compact brownish calli compared to pale wild type and negative control calli. Regenerated transgenic rice plants exhibited a reduction in organ size and plant height, rolled, erect leaves, less tillers, increased chlorophyll content, and reduced fertility with smaller green seeds. At the molecular level Eg707 overexpression caused an increase in the transcription of SAPK9, a SnRK2 protein kinase family member that is activated by ABA and hyperosmotic stress. Together, the results show that ectopic Eg707 expression influences cell division and differentiation, presumably via altered hormone homeostasis.


Assuntos
Arecaceae/genética , Diferenciação Celular/genética , Divisão Celular/genética , Genes de Plantas , Oryza/genética , Caulimovirus/genética , Clorofila/metabolismo , Fertilidade/genética , Expressão Gênica , Genes Virais , Engenharia Genética , Genótipo , Oryza/citologia , Oryza/metabolismo , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/citologia , Sementes/genética , Sementes/metabolismo
20.
Plant Physiol ; 160(4): 1808-26, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23096158

RESUMO

Whole-genome duplication through the formation of diploid gametes is a major route for polyploidization, speciation, and diversification in plants. The prevalence of polyploids in adverse climates led us to hypothesize that abiotic stress conditions can induce or stimulate diploid gamete production. In this study, we show that short periods of cold stress induce the production of diploid and polyploid pollen in Arabidopsis (Arabidopsis thaliana). Using a combination of cytological and genetic analyses, we demonstrate that cold stress alters the formation of radial microtubule arrays at telophase II and consequently leads to defects in postmeiotic cytokinesis and cell wall formation. As a result, cold-stressed male meiosis generates triads, dyads, and monads that contain binuclear and polynuclear microspores. Fusion of nuclei in binuclear and polynuclear microspores occurs spontaneously before pollen mitosis I and eventually leads to the formation of diploid and polyploid pollen grains. Using segregation analyses, we also found that the majority of cold-induced dyads and triads are genetically equivalent to a second division restitution and produce diploid gametes that are highly homozygous. In a broader perspective, these findings offer insights into the fundamental mechanisms that regulate male gametogenesis in plants and demonstrate that their sensitivity to environmental stress has evolutionary significance and agronomic relevance in terms of polyploidization.


Assuntos
Arabidopsis/citologia , Temperatura Baixa , Diploide , Meiose , Microtúbulos/metabolismo , Pólen/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Segregação de Cromossomos , Citocinese , Fluorescência , Genótipo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mutação/genética , Pólen/metabolismo , Poliploidia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA