Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011617

RESUMO

Apart from controlling hematopoiesis, the bone marrow (BM) also serves as a secondary lymphoid organ, as it can induce naïve T cell priming by resident dendritic cells (DC). When analyzing DCs in murine BM, we uncovered that they are localized around sinusoids, can (cross)-present antigens, become activated upon intravenous LPS-injection, and for the most part belong to the cDC2 subtype which is associated with Th2/Th17 immunity. Gene-expression profiling revealed that BM-resident DCs are enriched for several c-type lectins, including Dectin-1, which can bind beta-glucans expressed on fungi and yeast. Indeed, DCs in BM were much more efficient in phagocytosis of both yeast-derived zymosan-particles and Aspergillus conidiae than their splenic counterparts, which was highly dependent on Dectin-1. DCs in human BM could also phagocytose zymosan, which was dependent on ß1-integrins. Moreover, zymosan-stimulated BM-resident DCs enhanced the differentiation of hematopoietic stem and progenitor cells towards neutrophils, while also boosting the maintenance of these progenitors. Our findings signify an important role for BM DCs as translators between infection and hematopoiesis, particularly in anti-fungal immunity. The ability of BM-resident DCs to boost neutrophil formation is relevant from a clinical perspective and contributes to our understanding of the increased susceptibility for fungal infections following BM damage.


Assuntos
Antígenos de Fungos/imunologia , Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Neutrófilos/imunologia , Idoso , Idoso de 80 Anos ou mais , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Inflamação/patologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Antígeno de Macrófago 1/metabolismo , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zimosan/metabolismo
2.
Eur J Immunol ; 49(6): 853-872, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30891737

RESUMO

BM has been put forward as a major reservoir for memory CD8+  T cells. In order to fulfill that function, BM should "store" memory CD8+ T cells, which in biological terms would require these "stored" memory cells to be in disequilibrium with the circulatory pool. This issue is a matter of ongoing debate. Here, we unequivocally demonstrate that murine and human BM harbors a population of tissue-resident memory CD8+ T (TRM ) cells. These cells develop against various pathogens, independently of BM infection or local antigen recognition. BM CD8+ TRM cells share a transcriptional program with resident lymphoid cells in other tissues; they are polyfunctional cytokine producers and dependent on IL-15, Blimp-1, and Hobit. CD8+ TRM cells reside in the BM parenchyma, but are in close contact with the circulation. Moreover, this pool of resident T cells is not size-restricted and expands upon peripheral antigenic re-challenge. This works extends the role of the BM in the maintenance of CD8+ T cell memory to include the preservation of an expandable reservoir of functional, non-recirculating memory CD8+ T cells, which develop in response to a large variety of peripheral antigens.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
3.
Eur J Immunol ; 49(4): 576-589, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30707456

RESUMO

The BM serves as a blood-forming organ, but also supports the maintenance and immune surveillance function of many T cells. Yet, in contrast to other organs, little is known about the molecular mechanisms that drive T-cell migration to and localization inside the BM. As BM accumulates many CXCR3-expressing memory CD8+ T cells, we tested the involvement of this chemokine receptor, but found that CXCR3 is not required for BM entry. In contrast, we could demonstrate that CXCR4, which is highly expressed on both naive and memory CD8+ T cells in BM, is critically important for homing of all CD8+ T-cell subsets to the BM in mice. Upon entry into the BM parenchyma, both naïve and memory CD8+ T cells locate close to sinusoidal vessels. Intravital imaging experiments revealed that CD8 T cells are surprisingly immobile and we found that they interact with ICAM-1+VCAM-1+BP-1+ perivascular stromal cells. These cells are the major source of CXCL12, but also express key survival factors and maintenance cytokines IL-7 and IL-15. We therefore conclude that CXCR4 is not only crucial for entry of CD8+ T cells into the BM, but also controls their subsequent localization toward BM niches that support their survival.


Assuntos
Medula Óssea/imunologia , Medula Óssea/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/imunologia , Microambiente Celular , Receptores CXCR4/metabolismo , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular/imunologia , Microambiente Celular/genética , Microambiente Celular/imunologia , Citocinas/biossíntese , Memória Imunológica , Camundongos , Receptores CXCR3 , Células Estromais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Stem Cells Dev ; 27(9): 579-589, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649408

RESUMO

Bone marrow (BM) mesenchymal stromal cells (MSCs) provide microenvironmental support to hematopoietic stem and progenitor cells (HSPCs). Culture-expanded MSCs are interesting candidates for cellular therapies due to their immunosuppressive and regenerative potential which can be further enhanced by pretreatment with interferon-gamma (IFN-γ). However, it remains unknown whether IFN-γ can also influence hematopoietic support by BM-MSCs. In this study, we elucidate the impact of IFN-γ on the hematopoietic support of BM-MSCs. We found that IFN-γ increases expression of interleukin (IL)-6 and stem cell factor by human BM-MSCs. IFN-γ-treated BM-MSCs drive HSPCs toward myeloid commitment in vitro, but impair subsequent differentiation of HSPC. Moreover, IFN-γ-ARE-Del mice with increased IFN-γ production specifically lose their BM-MSCs, which correlates with a loss of hematopoietic stem cells' quiescence. Although IFN-γ treatment enhances the immunomodulatory function of MSCs in a clinical setting, we conclude that IFN-γ negatively affects maintenance of BM-MSCs and their hematopoietic support in vitro and in vivo.


Assuntos
Hematopoese/efeitos dos fármacos , Interferon gama/toxicidade , Células-Tronco Mesenquimais/patologia , Adolescente , Adulto , Idoso , Animais , Citocinas/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
6.
World J Stem Cells ; 9(2): 37-44, 2017 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-28289507

RESUMO

When hematopoietic stem and progenitor cells (HSPC) are harvested for transplantation, either from the bone marrow or from mobilized blood, the graft contains a significant number of T cells. It is these T cells that are the major drivers of graft-vs-host disease (GvHD). The risk for GvHD can simply be reduced by the removal of these T cells from the graft. However, this is not always desirable, as this procedure also decreases the engraftment of the transplanted HSPCs and, if applicable, a graft-vs-tumor effect. This poses an important conundrum in the field: T cells act as a double-edged sword upon allogeneic HSPC transplantation, as they support engraftment of HSPCs and provide anti-tumor activity, but can also cause GvHD. It has recently been suggested that T cells also enhance the engraftment of autologous HSPCs, thus supporting the notion that T cells and HSPCs have an important functional interaction that is highly beneficial, in particular during transplantation. The underlying reason on why and how T cells contribute to HSPC engraftment is still poorly understood. Therefore, we evaluate in this review the studies that have examined the role of T cells during HSPC transplantation and the possible mechanisms involved in their supporting function. Understanding the underlying cellular and molecular mechanisms can provide new insight into improving HSPC engraftment and thus lower the number of HSPCs required during transplantation. Moreover, it could provide new avenues to limit the development of severe GvHD, thus making HSPC transplantations more efficient and ultimately safer.

7.
PLoS Pathog ; 11(3): e1004675, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25738498

RESUMO

Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated. Based on these findings, we conclude that enhanced GITR-triggering mediates its protective, anti-viral effect on the CD8 T cell compartment by boosting CD4 T cell help. As such, increasing costimulation through GITR may be an attractive strategy to increase anti-viral CTL responses without exacerbating pathology, in particular to persistent viruses such as HIV and HCV.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Imunidade Celular , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Ligante de CD40/genética , Ligante de CD40/imunologia , Linfócitos T CD8-Positivos/patologia , Doença Crônica , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/patologia , Camundongos , Camundongos Transgênicos , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Linfócitos T Auxiliares-Indutores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA