Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Hosp Pharm ; 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853692

RESUMO

OBJECTIVES: Aggregation is one of the key critical points limiting the stability of monoclonal antibodies in solution. The present study aimed to investigate the in-use stability of a residual monoclonal antibody solution after withdrawal of most of the filling volume of PF-06439535 (bevacizumab biosimilar), addressing the physical and chemical stability with respect to aggregation and fragmentation. METHODS: The stability of residual PF-06439535 solution (25 mg/mL) after withdrawal of 80% (12.8 mL) filling volume with a 20G needle was monitored over a light-protected storage period of 8 days at 2-8°C and 25°C with measurement time points at D0 (start of storage), D2, D4, and D8 (2, 4, and 8 days of storage after start, respectively). Unopened vials stored under the same conditions served as control. For this purpose, the analytical results from size exclusion chromatography, dynamic light scattering, and micro-flow imaging obtained after the individual measurement time points up to 8 days were compared with those obtained at D0 and with those obtained for unopened vials stored under the same conditions. RESULTS: No aggregation or ongoing fragmentation due to partial withdrawal of filling volume could be observed in the residual PF-06439535 solution. Moreover, no changes in the particle size distribution at D8 compared with the D0 values were identified upon storage at either 2-8°C or 25°C (both opened and unopened vials). The total concentration of particles ≥10 µm of all samples was <100 particles/mL. In addition, no variations in the pH values or in the visual appearance were detected over the whole study period in all samples at all storage conditions. CONCLUSIONS: Consequently, residual PF-06439535 solution (25 mg/mL) in opened vials may be regarded as stable when stored light-protected over a period of 8 days in the refrigerator (2-8°C) or at 25°C.

2.
iScience ; 24(3): 102185, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33718837

RESUMO

The mechanical properties of the extracellular matrix strongly influence tumor progression and invasion. Yes-associated protein (YAP) has been shown to be a key regulator of this process translating mechanical cues from the extracellular matrix into intracellular signals. Despite its apparent role in tumor progression and metastasis, it is not clear yet, whether YAP activation can actively trigger the onset of invasion. To address this question, we designed a photo-activatable YAP (optoYAP), which allows for spatiotemporal control of its activation. The activation mechanism of optoYAP is based on optically triggered nuclear translocation of the protein. Activation of optoYAP induces downstream signaling for several hours and leads to increased proliferation in two- and three-dimensional cultures. Applied to cancer spheroids, optoYAP activation induces invasion. Site-selective activation of optoYAP in cancer spheroids strikingly directs invasion into the activated direction. Thus, nuclear translocation of YAP may be enough to trigger the onset of invasion.

3.
Cell Chem Biol ; 28(8): 1119-1131.e27, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33626324

RESUMO

The role of two-pore channel 2 (TPC2), one of the few cation channels localized on endolysosomal membranes, in cancer remains poorly understood. Here, we report that TPC2 knockout reduces proliferation of cancer cells in vitro, affects their energy metabolism, and successfully abrogates tumor growth in vivo. Concurrently, we have developed simplified analogs of the alkaloid tetrandrine as potent TPC2 inhibitors by screening a library of synthesized benzyltetrahydroisoquinoline derivatives. Removal of dispensable substructures of the lead molecule tetrandrine increases antiproliferative properties against cancer cells and impairs proangiogenic signaling of endothelial cells to a greater extent than tetrandrine. Simultaneously, toxic effects on non-cancerous cells are reduced, allowing in vivo administration and revealing a TPC2 inhibitor with antitumor efficacy in mice. Hence, our study unveils TPC2 as valid target for cancer therapy and provides easily accessible tetrandrine analogs as a promising option for effective pharmacological interference.


Assuntos
Antineoplásicos/farmacologia , Canais de Cálcio/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Edição de Genes , Isoquinolinas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL
4.
PLoS One ; 14(11): e0224314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31747409

RESUMO

Cancer progression and metastases are frequently related to changes of cell motility. Amongst others, the microRNA-200c (miR-200c) was shown to maintain the epithelial state of cells and to hamper migration. Here, we describe two miR-200c inducible breast cancer cell lines, derived from miR-200c knock-out MCF7 cells as well as from the miR-200c-negative MDA-MB-231 cells and report on the emerging phenotypic effects after miR-200s induction. The induction of miR-200c expression seems to effect a rapid reduction of cell motility, as determined by 1D microlane migration assays. Sustained expression of miR200c leads to a changed morphology and reveals a novel mechanism by which miR-200c interferes with cytoskeletal components. We find that filamin A expression is attenuated by miRNA-200c induced downregulation of the transcription factors c-Jun and MRTF/SRF. This potentially novel pathway that is independent of the prominent ZEB axis could lead to a broader understanding of the role that miR200c plays in cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Filaminas/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais/genética
5.
Cell Death Dis ; 10(4): 302, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944311

RESUMO

Severe side effects often restrict clinical application of the widely used chemotherapeutic drug doxorubicin. In order to decrease required substance concentrations, new concepts for successful combination therapy are needed. Since doxorubicin causes DNA damage, combination with compounds that modulate DNA repair could be a promising strategy. Very recently, a role of nuclear actin for DNA damage repair has been proposed, making actin a potential target for cancer therapy in combination with DNA-damaging therapeutics. This is of special interest, since actin-binding compounds have not yet found their way into clinics. We find that low-dose combination treatment of doxorubicin with the actin polymerizer chondramide B (ChB) synergistically inhibits tumor growth in vivo. On the cellular level we demonstrate that actin binders inhibit distinctive double strand break (DSB) repair pathways. Actin manipulation impairs the recruitment of replication factor A (RPA) to the site of damage, a process crucial for homologous recombination. In addition, actin binders reduce autophosphorylation of DNA-dependent protein kinase (DNA-PK) during nonhomologous end joining. Our findings substantiate a direct involvement of actin in nuclear DSB repair pathways, and propose actin as a therapeutic target for combination therapy with DNA-damaging agents such as doxorubicin.


Assuntos
Actinas/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas de Bactérias/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Depsipeptídeos/uso terapêutico , Doxorrubicina/uso terapêutico , Actinas/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Bactérias/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Morte Celular/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Proteína Quinase Ativada por DNA/metabolismo , Depsipeptídeos/farmacologia , Doxorrubicina/farmacologia , Células HeLa , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Recombinação Genética/efeitos dos fármacos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Tiazolidinas/farmacologia , Tiazolidinas/uso terapêutico , Transplante Heterólogo
6.
J Phys Chem B ; 122(49): 11373-11380, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30179494

RESUMO

Hsp90 is an essential molecular chaperone, which has to be in a dimeric form for its correct function. While the affinity of the dimer has previously been measured, little is known about how it associates and dissociates and the factors that influence this. We perform an in-depth single molecule characterization of the C-terminal association and dissociation of Hsp90. We find more than one dissociation rate, indicating that the dimer has a stable and an unstable state. Furthermore, we find that the stability of the C-terminal association is dependent on the presence of ATP, despite the C-terminal dimerization interface being distal to the catalytic site.


Assuntos
Proteínas de Choque Térmico HSP90/química , Nucleotídeos/química , Adenosina Trifosfatases/química , Clonagem Molecular , Dimerização , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Pinças Ópticas , Dobramento de Proteína , Estabilidade Proteica
7.
J Cell Sci ; 131(10)2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29724912

RESUMO

Developmental processes, such as angiogenesis, are associated with a constant remodeling of the actin cytoskeleton in response to different mechanical stimuli. The mechanosensitive transcription factors MRTF-A (MKL1) and YAP (also known as YAP1) are important mediators of this challenging adaptation process. However, it is as yet unknown whether both pathways respond in an identical or in a divergent manner to a given microenvironmental guidance cue. Here, we use a micropatterning approach to dissect single aspects of cellular behavior in a spatiotemporally controllable setting. Using the exemplary process of angiogenesis, we show that cell-cell contacts and adhesive surface area are shared regulatory parameters of MRTF and YAP on rigid 2D surfaces. By analyzing MRTF and YAP under laminar flow conditions and during cell migration on dumbbell-shaped microstructures, we demonstrate that they exhibit different translocation kinetics. In conclusion, our work promotes the application of micropatterning techniques as a cell biological tool to study mechanosensitive signaling in the context of angiogenesis.


Assuntos
Actinas/metabolismo , Vasos Sanguíneos/metabolismo , Técnicas Citológicas/métodos , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular , Actinas/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vasos Sanguíneos/química , Vasos Sanguíneos/crescimento & desenvolvimento , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA