Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 2653-2679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974119

RESUMO

Purpose: Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods: After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results: In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion: The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.


Assuntos
Proteína Quinase 10 Ativada por Mitógeno , Proteína Supressora de Tumor p53 , Peptidase 7 Específica de Ubiquitina , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/química , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/química , Humanos , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 10 Ativada por Mitógeno/química , Sulfonas/química , Sulfonas/farmacologia , Estrutura Molecular , Solubilidade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Acrilamidas/química , Acrilamidas/farmacologia , Acrilatos/química , Acrilatos/farmacologia , Ligação Proteica
2.
J Med Chem ; 67(10): 7668-7758, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38711345

RESUMO

Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.


Assuntos
Cisteína , Química Farmacêutica/métodos , Cisteína/química , Cisteína/metabolismo , Ligantes
3.
J Med Chem ; 67(8): 6549-6569, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604131

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.


Assuntos
Inibidores de Proteínas Quinases , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Microssomos Hepáticos/metabolismo
4.
J Med Chem ; 65(6): 4616-4632, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35286086

RESUMO

Anticancer drug conjugates may benefit from simultaneous action at two targets potentially overcoming the drawbacks of current cancer treatment, such as insufficient efficacy, high toxicity, and development of resistance. Compared to a combination of two single-target drugs, they may offer an advantage of pharmacokinetic simplicity and fewer drug-drug interactions. Here, we report a series of compounds connecting tamoxifen or endoxifen with the EGFR-inhibitor gefitinib via a covalent linkage. These hybrid ligands retain both ER antagonist activity and EGFR inhibition. The most potent analogues exhibited single-digit nanomolar activities at both targets. The amide-linked endoxifen-gefitinib drug conjugates 17b and 17c demonstrated the most favorable anti-cancer profile in cellular viability assays on MCF7, MDA-MB-231, MDA-MB-468, and BT-549 breast cancer cells. Most importantly, in TNBC cells 17b and 17c displayed nanomolar IC50-values (380 nM - 970 nM) and were superior in their anti-cancer activity compared to their control compounds and combinations thereof.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB , Feminino , Gefitinibe/farmacologia , Humanos , Ligantes , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
J Med Chem ; 65(4): 3173-3192, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35167750

RESUMO

Monopolar spindle kinase 1 (MPS1/TTK) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors such as triple-negative breast cancer. While long drug-target residence times have been suggested to be beneficial in the context of therapeutic MPS1 inhibition, no irreversible inhibitors have been reported. Here we present the design and characterization of the first irreversible covalent MPS1 inhibitor, RMS-07, targeting a poorly conserved cysteine in the kinase's hinge region. RMS-07 shows potent MPS1 inhibitory activity and selectivity against all protein kinases with an equivalent cysteine but also in a broader kinase panel. We demonstrate potent cellular target engagement and pronounced activity against various cancer cell lines. The covalent binding mode was validated by mass spectrometry and an X-ray crystal structure. This proof of MPS1 covalent ligandability may open new avenues for the design of MPS1-specific chemical probes or drugs.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Camundongos , Microssomos Hepáticos , Modelos Moleculares , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
6.
Chimia (Aarau) ; 76(5): 435-447, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069715

RESUMO

Covalent inhibitors have recently seen a revival in medicinal chemistry. Inhibitors addressing non-catalytic cysteine residues with weakly reactive electrophiles have been very successfully employed to target protein kinases, one of the major druggable protein families. Here we provide an overview of irreversible and reversible covalent protein kinase inhibitors in clinical development and beyond. We further spotlight recent advances in targeting amino acids other than cysteine and the reactive groups utilized in covalent protein kinase inhibitors.

7.
Cancers (Basel) ; 13(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680283

RESUMO

The ribosomal protein S6 kinase beta 2 (S6K2) is thought to play an important role in malignant cell proliferation, but is understudied compared to its closely related homolog S6 kinase beta 1 (S6K1). To better understand the biological function of S6K2, chemical probes are needed, but the high similarity between S6K2 and S6K1 makes it challenging to selectively address S6K2 with small molecules. We were able to design the first potent and highly isoform-specific S6K2 inhibitor from a known S6K1-selective inhibitor, which was merged with a covalent inhibitor engaging a cysteine located in the hinge region in the fibroblast growth factor receptor kinase (FGFR) 4 via a nucleophilic aromatic substitution (SNAr) reaction. The title compound shows a high selectivity over kinases with an equivalently positioned cysteine, as well as in a larger kinase panel. A good stability towards glutathione and Nα-acetyl lysine indicates a non-promiscuous reactivity pattern. Thus, the title compound represents an important step towards a high-quality chemical probe to study S6K2-specific signaling.

8.
Angew Chem Int Ed Engl ; 60(30): 16472-16479, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33991039

RESUMO

The increasing number of available genomes, in combination with advanced genome mining techniques, unveiled a plethora of biosynthetic gene clusters (BGCs) coding for ribosomally synthesized and post-translationally modified peptides (RiPPs). The products of these BGCs often represent an enormous resource for new and bioactive compounds, but frequently, they cannot be readily isolated and remain cryptic. Here, we describe a tunable metabologenomic approach that recruits a synergism of bioinformatics in tandem with isotope- and NMR-guided platform to identify the product of an orphan RiPP gene cluster in the genomes of Nocardia terpenica IFM 0406 and 0706T . The application of this tactic resulted in the discovery of nocathioamides family as a founder of a new class of chimeric lanthipeptides I.


Assuntos
Alanina/análogos & derivados , Nocardia/química , Peptídeos/química , Sulfetos/química , Alanina/química , Biologia Computacional , Mineração de Dados , Genoma Bacteriano , Isótopos/química , Espectroscopia de Ressonância Magnética , Família Multigênica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Espectrometria de Massas em Tandem , Tioamidas/química
9.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291717

RESUMO

The nonreceptor tyrosine TEC kinases are key regulators of the immune system and play a crucial role in the pathogenesis of diverse hematological malignancies. In contrast to the substantial efforts in inhibitor development for Bruton's tyrosine kinase (BTK), specific inhibitors of the other TEC kinases, including the bone marrow tyrosine kinase on chromosome X (BMX), remain sparse. Here we present a novel class of dual BMX/BTK inhibitors, which were designed from irreversible inhibitors of Janus kinase (JAK) 3 targeting a cysteine located within the solvent-exposed front region of the ATP binding pocket. Structure-guided design exploiting the differences in the gatekeeper residues enabled the achievement of high selectivity over JAK3 and certain other kinases harboring a sterically demanding residue at this position. The most active compounds inhibited BMX and BTK with apparent IC50 values in the single digit nanomolar range or below showing moderate selectivity within the TEC family and potent cellular target engagement. These compounds represent an important first step towards selective chemical probes for the protein kinase BMX.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/química , Descoberta de Drogas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Sítios de Ligação , Descoberta de Drogas/métodos , Humanos , Janus Quinase 3/antagonistas & inibidores , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
10.
J Med Chem ; 62(12): 5673-5724, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30565923

RESUMO

Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,ß-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,ß-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.


Assuntos
Descoberta de Drogas , Terapia de Alvo Molecular/métodos , Sequência Conservada , Humanos
11.
J Med Chem ; 61(12): 5350-5366, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29852068

RESUMO

Janus kinases are major drivers of immune signaling and have been the focus of anti-inflammatory drug discovery for more than a decade. Because of the invariable colocalization of JAK1 and JAK3 at cytokine receptors, the question if selective JAK3 inhibition is sufficient to effectively block downstream signaling has been highly controversial. Recently, we discovered the covalent-reversible JAK3 inhibitor FM-381 (23) featuring high isoform and kinome selectivity. Crystallography revealed that this inhibitor induces an unprecedented binding pocket by interactions of a nitrile substituent with arginine residues in JAK3. Herein, we describe detailed structure-activity relationships necessary for induction of the arginine pocket and the impact of this structural change on potency, isoform selectivity, and efficacy in cellular models. Furthermore, we evaluated the stability of this novel inhibitor class in in vitro metabolic assays and were able to demonstrate an adequate stability of key compound 23 for in vivo use.


Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Estabilidade de Medicamentos , Humanos , Janus Quinase 3/química , Janus Quinase 3/metabolismo , Medições Luminescentes/métodos , Camundongos , Fosforilação/efeitos dos fármacos , Piridinas/química , Fator de Transcrição STAT5/metabolismo , Linfócitos T/efeitos dos fármacos
12.
Bioorg Med Chem Lett ; 27(18): 4229-4237, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28844493

RESUMO

Janus kinases (JAKs) are a family of four cytosolic protein kinases with a high degree of structural similarity. Due to its very restricted role in immune regulation, JAK3 was promoted as an excellent target for immunosuppression for more than a decade, but clinical validation of this concept is still elusive. During the last years, speculation arose that kinase activity of JAK1, which cooperates with JAK3 in cytokine receptor signaling, may have a dominant role over the one of JAK3. Until recently, however, this issue could not be appropriately addressed due to a lack of highly isoform-selective tool compounds. With the recent resurgence of covalent drugs, targeting of a specific cysteine that distinguishes JAK3 from other JAK family members became an attractive design option. By applying this strategy, a set of JAK3 inhibitors with excellent selectivity against other JAK isoforms and the kinome was developed during the last three years and used to decipher JAK3-dependent signaling. The data obtained with these tool compounds demonstrates that selective JAK3 inhibition is sufficient to block downstream signaling. Since one of these inhibitors is currently under evaluation in phase II clinical studies against several inflammatory disorders, it will soon become apparent whether selective JAK3 inhibition translates into clinical efficacy.


Assuntos
Cisteína/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Cisteína/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Janus Quinase 3/metabolismo , Inibidores de Proteínas Quinases/química
13.
Cell Chem Biol ; 23(11): 1335-1340, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27840070

RESUMO

Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform selective. Since JAK3 functions are restricted to immune cells, an isoform-selective inhibitor for JAK3 could be especially valuable to achieve clinically more useful and precise effects. However, the high degree of structural conservation makes isoform-selective targeting a challenging task. Here, we present picomolar inhibitors with unprecedented kinome-wide selectivity for JAK3. Selectivity was achieved by concurrent covalent reversible targeting of a JAK3-specific cysteine residue and a ligand-induced binding pocket. We confirmed that in vitro activity and selectivity translate well into the cellular environment and suggest that our inhibitors are powerful tools to elucidate JAK3-specific functions.


Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação/efeitos dos fármacos , Descoberta de Drogas , Humanos , Janus Quinase 3/química , Janus Quinase 3/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
14.
Future Med Chem ; 8(13): 1537-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27572962

RESUMO

AIM: The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. RESULTS: We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. CONCLUSION: The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].


Assuntos
Piperidinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
15.
Expert Opin Ther Pat ; 25(8): 849-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25991433

RESUMO

INTRODUCTION: c-Jun N-terminal kinases (JNKs) are involved in the emergence and progression of diverse pathologies such as neurodegenerative, cardiovascular and metabolic disorders as well as inflammation and cancer. In recent years, several highly selective pan-JNK inhibitors have been characterized and three chemical entities targeting JNKs have been investigated in clinical trials. AREAS COVERED: This review summarizes patents claiming inhibitors of all JNK isoforms published between 2010 and 2014. Although primarily focusing on the patent literature, relevant peer-reviewed publications related to the covered patents have also been included. Moreover, key patents claiming novel applications of previously published chemical entities are reviewed. The article highlights a total of 28 patents from nine pharmaceutical companies and academic research groups. EXPERT OPINION: Although some selective pan-JNK inhibitors with reasonable in vivo profiles are now available, little is known about the isoform selectivity required for each particular indication and the development of isoform-selective JNK inhibitors still represents a challenge in JNK drug discovery. Moreover, isoform-selective tool compounds are a prerequisite to a comprehensive understanding of the biology of each JNK isoform. Potential approaches towards such compounds include the design of type-II and type-I(1)/2 binders, which are absent in the current JNK inhibitor portfolios, as well as the design of novel allosteric inhibitors. Furthermore, covalent inhibition, which already led to the first high-quality probe for JNKs, might be further exploited for gaining selectivity and in vivo efficacy. With regard to a potential therapeutic application, the recently proposed concept of covalent reversible inhibitors is expected to be attractive.


Assuntos
Desenho de Fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Humanos , Isoenzimas , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Patentes como Assunto , Inibidores de Proteínas Quinases/farmacologia
16.
Amino Acids ; 47(6): 1155-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25715757

RESUMO

Deoxyhypusine hydroxylase (DOHH) is a dinuclear iron enzyme required for hydroxylation of the aminobutyl side chain of deoxyhypusine in eukaryotic translation initiation factor 5A (eIF-5A), the second step in hypusine biosynthesis. DOHH has been recently identified in P. falciparum and P. vivax. Both enzymes have very peculiar features including E-Z type HEAT-like repeats and a diiron centre in their active site. Both proteins share only 26 % amino acid identity to the human paralogue. Hitherto, no X-ray structure exists from either enzyme. However, structural predictions based on the amino acid sequence of the active site in comparison to the human enzyme show that four conserved histidine and glutamate residues provide the coordination sites for chelating the ferrous iron ions. Recently, we showed that P. vivax DOHH is inhibited by zileuton (N-[1-(1-benzothien-2-yl)ethyl]-N-hydroxyurea), a drug that is known for inhibiting human 5-lipoygenase (5-LOX) by the complexation of ferrous iron. A novel discovery program was launched to identify inhibitors of the P. falciparum DOHH from the Malaria Box, consisting of 400 chemical compounds, which are highly active in the erythrocytic stages of Malaria infections. In a first visual selection for potential ligands of ferrous iron, three compounds from different scaffold classes namely the diazonapthyl benzimidazole MMV666023 (Malaria Box plate A, position A03), the bis-benzimidazole MMV007384 (plate A, position B08), and a 1,2,5,-oxadiazole MMV665805 (plate A, position C03) were selected and subsequently evaluated in silico for their potential to complex iron ions. As a proof of principle, a bioanalytical assay was performed and the inhibition of hypusine biosynthesis was determined by GC-MS. All tested compounds proved to be active in this assay and MMV665805 exhibited the strongest inhibitory effect. Notably, the results were in accordance with the preliminary quantum-mechanical calculations suggesting the strongest iron complexation capacity for MMV665805. This compound might be a useful tool as well as a novel lead structure for inhibitors of P. falciparum DOHH.


Assuntos
Antimaláricos , Inibidores Enzimáticos , Quelantes de Ferro , Oxigenases de Função Mista/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Antimaláricos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia
17.
J Med Chem ; 58(1): 72-95, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25415535

RESUMO

The c-Jun N-terminal kinases (JNKs) are serine/threonine kinases implicated in the pathogenesis of various diseases. Recent advances in the development of novel inhibitors of JNKs will be reviewed. Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years. However, the development of isoform selective JNK inhibitors is still an open task.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/química , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Neoplasias/tratamento farmacológico , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo
18.
ChemMedChem ; 9(11): 2516-27, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25139757

RESUMO

The Janus kinases (JAKs) are a family of cytosolic tyrosine kinases crucially involved in cytokine signaling. JAKs have been demonstrated to be valid targets in the treatment of inflammatory and myeloproliferative disorders, and two inhibitors, tofacitinib and ruxolitinib, recently received their marketing authorization. Despite this success, selectivity within the JAK family remains a major issue. Both approved compounds share a common 7H-pyrrolo[2,3-d]pyrimidine hinge binding motif, and little is known about modifications tolerated at this heterocyclic core. In the current study, a library of tofacitinib bioisosteres was prepared and tested against JAK3. The compounds possessed the tofacitinib piperidinyl side chain, whereas the hinge binding motif was replaced by a variety of heterocycles mimicking its pharmacophore. In view of the promising expectations obtained from molecular modeling, most of the compounds proved to be poorly active. However, strategies for restoring activity within this series of novel chemotypes were discovered and crucial structure-activity relationships were deduced. The compounds presented may serve as starting point for developing novel JAK inhibitors and as a valuable training set for in silico models.


Assuntos
Janus Quinase 3/antagonistas & inibidores , Piperidinas/química , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirróis/química , Sítios de Ligação , Ligação de Hidrogênio , Janus Quinase 3/metabolismo , Piperidinas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Pirimidinas/metabolismo , Pirróis/metabolismo , Relação Estrutura-Atividade
19.
ChemMedChem ; 9(2): 277-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24403205

RESUMO

The Janus kinase (JAK) signaling pathway is of particular importance in the pathology of inflammatory diseases and oncological disorders, and the inhibition of Janus kinase 3 (JAK3) with small molecules has proven to provide therapeutic immunosuppression. A novel class of tricyclic JAK inhibitors derived from the 3-methyl-1,6-dihydrodipyrrolo[2,3-b:2',3'-d]pyridine scaffold was designed based on the tofacitinib-JAK3 crystal structure by applying a rigidization approach. A convenient synthetic strategy to access the scaffold via an intramolecular Heck reaction was developed, and a small library of inhibitors was prepared and characterized using in vitro biochemical as well as cellular assays. IC50 values as low as 220 pM could be achieved with selectivity for JAK3 over other JAK family members. Both activity and selectivity were confirmed in a cellular STAT phosphorylation assay, providing also first-time data for tofacitinib. Our novel inhibitors may serve as tool compounds and useful probes to explore the role of JAK3 inhibition in pharmacodynamics studies.


Assuntos
Desenho de Fármacos , Janus Quinase 3/antagonistas & inibidores , Piperidinas/química , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Células HeLa , Humanos , Janus Quinase 3/metabolismo , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Fosforilação/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA