RESUMO
Immune checkpoint receptors (ICR) modulate the immune response and are critical hubs for immunotherapy. However, data on their role in T lymphoid malignancies, such as cutaneous T cell lymphoma (CTCL), is sparse. We aimed to explore the role of ICR in the malignant features of transformed T lymphocytes and evaluate the effect of ICR-targeting monoclonal antibodies, often used as immunotherapy for solid tumors. We used the CTCL cell line HH and the Sézary cell line Hut78 to examine ICR expression and the effects of ICR inhibition on cell viability and proliferation. Despite their shared T cell progeny, the different CTCL cell lines exhibit markedly different ICR expression profiles. Programmed cell death-ligand 1 (PD-L1) was expressed by both cell lines, while programmed death-1 (PD-1) was expressed only by the HH cell line. Common to all malignant T cells was an autonomous hyper-proliferative state that did not require T cell receptor stimulation. A monoclonal antibody blocking PD-1 had a small but statistically significant augmenting effect on T cell proliferation. Of note, when the cells were exposed to ionizing radiation, healthy lymphocytes and those derived from the HH cell line were salvaged by anti-PD-L1. We show a regulatory role of ICR, mainly PD-1 and its ligand PD-L1, on cutaneous T cell malignancy.
Assuntos
Linfoma Cutâneo de Células T , Receptor de Morte Celular Programada 1 , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Ligantes , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Imunoterapia , FenótipoRESUMO
SLAMF6, a member of the SLAM (signaling lymphocyte activation molecules) family, is a homotypic-binding immune receptor expressed on NK, T, and B lymphocytes. Phosphorylation variance between T-cell subclones prompted us to explore its role in anti melanoma immunity. Using a 203-amino acid sequence of the human SLAMF6 (seSLAMF6) ectodomain, we found that seSLAMF6 reduced activation-induced cell death and had an antiapoptotic effect on tumor-infiltrating lymphocytes. CD8+ T cells costimulated with seSLAMF6 secreted more IFNγ and displayed augmented cytolytic activity. The systemic administration of seSLAMF6 to mice sustained adoptively transferred transgenic CD8+ T cells in comparable numbers to high doses of IL2. In a therapeutic model, lymphocytes activated by seSLAMF6 delayed tumor growth, and when further supported in vivo with seSLAMF6, induced complete tumor clearance. The ectodomain expedites the loss of phosphorylation on SLAMF6 that occurs in response to T-cell receptor triggering. Our findings suggest that seSLAMF6 is a costimulator that could be used in melanoma immunotherapy. Cancer Immunol Res; 6(2); 127-38. ©2018 AACR.
Assuntos
Antígenos CD8/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Animais , Materiais Biomiméticos/farmacologia , Antígenos CD8/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Melanoma/genética , Melanoma/terapia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/genéticaRESUMO
The DNA damage response (DDR) is a comprehensive and complex network of phosphorylation-mediated signaling pathways that originates endogenously from the DNA lesion and activates intrinsic DNA repair mechanisms. Here we describe a macrophage-dependent mechanism that regulates the response to DNA damage. We demonstrate that human monocytes, by releasing macrophage-derived HB-EGF, enhance DDR in neighboring cells suffering from DNA damage. Consequently, HB-EGF-treated cells exhibit higher double-strand break (DSB) rejoining and display lower levels of residual DSBs. Diethylnitrosamine (DEN) injection induce DSBs along with elevation in the number of macrophages and HB-EGF expression. Significantly, macrophage depletion or blocking HB-EGF activity results in higher levels of nonrepairable DSBs, suggesting that macrophages play a role in the resolution of DNA damage via HB-EGF. This study establishes that macrophages, acting through the activation of the EGFR cascade, constitute an important cell nonautonomous physiologic component of the DDR and points to a unique role played by immune cells in maintaining genome integrity.
Assuntos
Dano ao DNA/imunologia , Macrófagos/imunologia , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/imunologia , Receptores ErbB/imunologia , Receptores ErbB/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/imunologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/farmacologia , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/fisiologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Oxirredução , Transdução de Sinais/imunologiaRESUMO
The innate immune system responds to endogenous molecules released during cellular stress or those that have undergone modifications normally absent in healthy tissue. These structures are detected by pattern-recognition receptors, alerting the immune system to "danger." In this study, we looked for early signals that direct immune cells to cells undergoing stress before irreversible damage takes place. To avoid detecting signals emanating from apoptotic or necrotic cells we exposed fibroblasts to sublethal oxidative stress. Our results indicate that both nonenzymatic chemical reactions and aldehyde dehydrogenase-2-mediated enzymatic activity released signals from fibroblasts that selectively attracted CD14(+) monocytes but not T, NK, and NKT cells or granulocytes. Splenocytes from MyD88(-/-) mice did not migrate, and treatment with an inhibitory peptide that blocks MyD88 dimerization abrogated human monocyte migration. Monocyte migration was accompanied by downmodulation of CD14 expression and by the phosphorylation of IL-1R-associated kinase 1, a well-known MyD88-dependent signaling molecule. The scavenger receptor inhibitors, dextran sulfate and fucoidan, attenuated monocyte migration toward stressed cells and IL-1R-associated kinase 1 phosphorylation. Surprisingly, although monocyte migration was MyD88 dependent, it was not accompanied by inflammatory cytokine secretion. Taken together, these results establish a novel link between scavenger receptors and MyD88 that together function as sensors of oxidation-associated molecular patterns and induce monocyte motility. Furthermore, the data indicate that MyD88 independently regulates monocyte activation and motility.