Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Invest Dermatol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762064

RESUMO

Cutaneous T-cell lymphoma (CTCL) is characterized by malignant T-cells proliferating in a unique tumor microenvironment (TME) dominated by keratinocytes. Skin colonization and infection by Staphylococcus aureus (S. aureus) is a common cause of morbidity and suspected of fueling disease activity. Here we show that expression of HLA-DR, high-affinity receptors for Staphylococcal enterotoxins (SE), by keratinocytes correlates with IFN-γ expression in the TME. Importantly, IFN-γ induces HLA-DR, SE-binding, and SE-presentation by keratinocytes to malignant T-cells from Sézary syndrome (SS) patients, and malignant and non-malignant T-cell lines derived from SS and Mycosis fungoides patients. Likewise, preincubation of keratinocytes with supernatant from patient-derived SE-producing S. aureus triggers proliferation in malignant T-cells and cytokine release (including IL-2), when cultured with non-malignant T-cells. This is inhibited by pre-treatment with engineered bacteriophage S. aureus-specific endolysins. Furthermore, mutations in the HLA-DR binding sites of SE type-A, and siRNA-mediated knockdown of Janus Kinase-3 (JAK3) and IL-2Rγ block induction of malignant T-cell proliferation. In conclusion, we show that, upon exposure to patient-derived S. aureus and SE, keratinocytes stimulate IL-2Rγ/JAK3-dependent proliferation of malignant and non-malignant T-cells in an environment with non-malignant T-cells. These findings suggest that keratinocytes in the TME play a key role in S. aureus mediated disease activity in CTCL.

2.
Cells ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534347

RESUMO

Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)-the most common variant of CTCL-often presents with skin lesions around the abdomen and buttocks ("bathing suit" distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Dermatopatias , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Vitamina D , Linfoma Cutâneo de Células T/patologia , Micose Fungoide/patologia , Pele/patologia , Vitaminas
4.
Contact Dermatitis ; 89(5): 323-334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619972

RESUMO

BACKGROUND: The junctional adhesion molecule-like protein (JAML) plays important roles in wound healing and activation of epidermal γδ T cells in mice. Whether JAML plays a role in contact hypersensitivity (CHS), the animal model of allergic contact dermatitis (ACD), is not known. METHODS: To examine the role of JAML in CHS, we used various mouse models of CHS in JAML knockout (KO) and wild-type (WT) mice. Furthermore, the expression of the JAML ligand coxsackievirus and adenovirus receptor (CXADR) on keratinocytes was accessed in vitro and in vivo. RESULTS: JAML KO mice had a diminished inflammatory response during both the sensitization and elicitation phase of CHS and had reduced numbers of CD8+ and CD4+ T cells in the epidermis. Furthermore, interferon γ (IFNγ), interleukin 1ß (IL-1ß) and CXCL10 production were significantly reduced in JAML KO mice during the elicitation phase. We found that CD8+ T cells express JAML and that JAML is essential for rapid flare-up responses to contact allergens. Finally, we show that keratinocytes up-regulate the JAML ligand CXADR following exposure to contact allergens. CONCLUSION: Our study is the first to show a central role of JAML in CHS and reveals a potential new target for the treatment of ACD in humans.


Assuntos
Linfócitos T CD8-Positivos , Dermatite Alérgica de Contato , Humanos , Camundongos , Animais , Moléculas de Adesão Juncional , Ligantes , Epiderme , Camundongos Knockout , Camundongos Endogâmicos C57BL
5.
J Invest Dermatol ; 143(9): 1757-1768.e3, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36889662

RESUMO

Staphylococcus aureus is suspected to fuel disease activity in cutaneous T-cell lymphomas. In this study, we investigate the effect of a recombinant, antibacterial protein, endolysin (XZ.700), on S. aureus skin colonization and malignant T-cell activation. We show that endolysin strongly inhibits the proliferation of S. aureus isolated from cutaneous T-cell lymphoma skin and significantly decreases S. aureus bacterial cell counts in a dose-dependent manner. Likewise, ex vivo colonization of both healthy and lesional skin by S. aureus is profoundly inhibited by endolysin. Moreover, endolysin inhibits the patient-derived S. aureus induction of IFNγ and the IFNγ-inducible chemokine CXCL10 in healthy skin. Whereas patient-derived S. aureus stimulates activation and proliferation of malignant T cells in vitro through an indirect mechanism involving nonmalignant T cells, endolysin strongly inhibits the effects of S. aureus on activation (reduced CD25 and signal transducer and activator of transcription 5 phosphorylation) and proliferation (reduced Ki-67) of malignant T cells and cell lines in the presence of nonmalignant T cells. Taken together, we provide evidence that endolysin XZ.700 inhibits skin colonization, chemokine expression, and proliferation of pathogenic S. aureus and blocks their potential tumor-promoting effects on malignant T cells.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Proteínas Recombinantes , Linfócitos T , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/microbiologia
6.
Blood ; 141(2): 180-193, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36122387

RESUMO

Cutaneous T-cell lymphoma (CTCL) is a devastating lymphoid malignancy characterized by the accumulation of malignant T cells in the dermis and epidermis. Skin lesions cause serious symptoms that hamper quality of life and are entry sites for bacterial infection, a major cause of morbidity and mortality in advanced diseases. The mechanism driving the pathological processes that compromise the skin barrier remains unknown. Here, we report increased transepidermal water loss and compromised expression of the skin barrier proteins filaggrin and filaggrin-2 in areas adjacent to TOX-positive T cells in CTCL skin lesions. Malignant T cells secrete mediators (including cytokines such as interleukin 13 [IL-13], IL-22, and oncostatin M) that activate STAT3 signaling and downregulate filaggrin and filaggrin-2 expression in human keratinocytes and reconstructed human epithelium. Consequently, the repression of filaggrins can be counteracted by a cocktail of antibodies targeting these cytokines/receptors, small interfering RNA-mediated knockdown of JAK1/STAT3, and JAK1 inhibitors. Notably, we show that treatment with a clinically approved JAK inhibitor, tofacitinib, increases filaggrin expression in lesional skin from patients with mycosis fungoides. Taken together, these findings indicate that malignant T cells secrete cytokines that induce skin barrier defects via a JAK1/STAT3-dependent mechanism. As clinical grade JAK inhibitors largely abrogate the negative effect of malignant T cells on skin barrier proteins, our findings suggest that such inhibitors provide novel treatment options for patients with CTCL with advanced disease and a compromised skin barrier.


Assuntos
Linfoma Cutâneo de Células T , Dermatopatias , Neoplasias Cutâneas , Humanos , Proteínas Filagrinas , Qualidade de Vida , Linfoma Cutâneo de Células T/patologia , Dermatopatias/patologia , Linfócitos T/patologia , Citocinas/metabolismo , Neoplasias Cutâneas/patologia
7.
Front Immunol ; 13: 1038960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405761

RESUMO

Tuberculosis (TB) presents a serious health problem with approximately a quarter of the world's population infected with Mycobacterium tuberculosis (M. tuberculosis) in an asymptomatic latent state of which 5-10% develops active TB at some point in their lives. The antimicrobial protein cathelicidin has broad antimicrobial activity towards viruses and bacteria including M. tuberculosis. Vitamin D increases the expression of cathelicidin in many cell types including macrophages, and it has been suggested that the vitamin D-mediated antimicrobial activity against M. tuberculosis is dependent on the induction of cathelicidin. However, unraveling the immunoregulatory effects of vitamin D in humans is hampered by the lack of suitable experimental models. We have previously described a family in which members suffer from hereditary vitamin D-resistant rickets (HVDRR). The family carry a mutation in the DNA-binding domain of the vitamin D receptor (VDR). This mutation leads to a non-functional VDR, meaning that vitamin D cannot exert its effect in family members homozygous for the mutation. Studies of HVDRR patients open unique possibilities to gain insight in the immunoregulatory roles of vitamin D in humans. Here we describe the impaired ability of macrophages to produce cathelicidin in a HVDRR patient, who in her adolescence suffered from extrapulmonary TB. The present case is a rare experiment of nature, which illustrates the importance of vitamin D in the pathophysiology of combating M. tuberculosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Humanos , Adolescente , Feminino , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Mycobacterium tuberculosis/metabolismo , Macrófagos/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Vitaminas/metabolismo , Raquitismo Hipofosfatêmico Familiar/metabolismo , Catelicidinas
8.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139650

RESUMO

Cutaneous T cell lymphoma (CTCL) is a group of non-Hodgkin's primary cutaneous T cell lymphomas, with Mycosis Fungoides and Sézary syndrome (SS) being the two most common subtypes. Fatty acid synthase (FASN) is a crucial enzyme that catalyses the biosynthesis of fatty acids, which has been reported to play an oncogenic role in various malignancies but not in CTCL so far. Herein, we show that FASN is highly expressed in CTCL cell lines and in peripheral blood mononuclear cells (PBMCs) from CTCL patients, while it is not in PBMCs from healthy individuals. The inhibition of FASN in CTCL cell lines impairs cell viability, survival, and proliferation, but, interestingly, it also increases FASN expression. However, inhibiting sterol regulatory element binding protein (SREBP), a transcription factor that promotes the expression of FASN, partially reversed the upregulation of FASN induced by FASN inhibitors. Thus, the combination of FASN and SREBP inhibitors enhanced the effects on both CTCL cell lines and PBMCs from SS patients, where a valid inhibition on cell proliferation could be verified. Importantly, compared to non-malignant cells, primary malignant cells are more sensitive to the inhibition of FASN and SREBP, making the combination of FASN and SREBP inhibitors a promising novel therapeutic strategy in CTCL.

9.
Front Immunol ; 13: 978658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119034

RESUMO

The CD3 subunits of the T-cell antigen receptor (TCR) play a central role in regulation of surface TCR expression levels. Humans who lack CD3γ (γ-) show reduced surface TCR expression levels and abolished phorbol ester (PMA)-induced TCR down-regulation. The response to PMA is mediated by a double leucine motif in the intracellular (IC) domain of CD3γ. However, the molecular cause of the reduced TCR surface expression in γ- lymphocytes is still not known. We used retroviral vectors carrying wild type CD3γ or CD3δ or the following chimeras (EC-extracellular, TM-transmembrane and IC): δECγTMγIC (δγγ for short), γγδ, γδδ and γγ-. Expression of γγγ, γγδ, γδδ or γγ- in the γ- T cell line JGN, which lacks surface TCR, demonstrated that cell surface TCR levels in JGN were dependent on the EC domain of CD3γ and could not be replaced by the one of CD3δ. In JGN and primary γ- patient T cells, the tested chimeras confirmed that the response to PMA maps to the IC domain of CD3γ. Since protein homology explains these results better than domain structure, we conclude that CD3γ contributes conformational cues that improve surface TCR expression, likely at the assembly or membrane transport steps. In JGN cells all chimeric TCRs were signalling competent. However, an IC domain at CD3γ was required for TCR-induced IL-2 and TNF-α production and CD69 expression, indicating that a TCR without a CD3γ IC domain has altered signalling capabilities.


Assuntos
Interleucina-2 , Fator de Necrose Tumoral alfa , Complexo CD3 , Humanos , Leucina , Ésteres de Forbol , Receptores de Antígenos de Linfócitos T/metabolismo
10.
Front Immunol ; 12: 722806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621269

RESUMO

The active form of vitamin D3 (1,25(OH)2D3) has a great impact on T cell effector function. Thus, 1,25(OH)2D3 promotes T helper 2 (Th2) and regulatory T (Treg) cell function and concomitantly inhibits Th1 and Th17 cell function. Thus, it is believed that vitamin D exerts anti-inflammatory effects. However, vitamin D binding protein (DBP) strongly binds both 1,25(OH)2D3 and the precursor 25(OH)D3, leaving only a minor fraction of vitamin D in the free, bioavailable form. Accordingly, DBP in physiological concentrations would be expected to block the effect of vitamin D on T cells and dendritic cells. In the present study, we show that pro-inflammatory, monocyte-derived M1 macrophages express very high levels of the 25(OH)D-1α-hydroxylase CYP27B1 that enables them to convert 25(OH)D3 into 1,25(OH)2D3 even in the presence of physiological concentrations of DBP. Co-cultivation of M1 macrophages with T cells allows them to overcome the sequestering of 25(OH)D3 by DBP and to produce sufficient levels of 1,25(OH)2D3 to affect T cell effector function. This study suggests that in highly inflammatory conditions, M1 macrophages can produce sufficient levels of 1,25(OH)2D3 to modify T cell responses and thereby reduce T cell-mediated inflammation via a vitamin D-mediated negative feed-back loop.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Macrófagos/metabolismo , Linfócitos T Reguladores/metabolismo , Proteína de Ligação a Vitamina D/metabolismo , Vitamina D/metabolismo , Disponibilidade Biológica , Humanos
11.
J Invest Dermatol ; 141(10): 2449-2458, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33862068

RESUMO

Staphylococcal enterotoxins are believed to fuel disease activity in cutaneous T-cell lymphoma. Recent data support this by showing that antibiotics inhibit malignant T cells in skin lesions in mycosis fungoides and Sézary syndrome, the most common forms of cutaneous T-cell lymphoma. Yet, it remains incompletely characterized how staphylococcal enterotoxins fuel disease activity. In this study, we show that staphylococcal enterotoxins induce the expression of the oncogenic microRNA miR-155 in primary malignant T cells. Thus, staphylococcal enterotoxins and Staphyloccocus aureus isolates from lesional skin of patients induce miR-155 expression at least partly through the IL-2Rg‒Jak‒signal transducer and activator of transcription 5 pathway, and the effect is augmented by the presence of nonmalignant T cells. Importantly, mycosis fungoides lesions harbor S. aureus, express Y-phosphorylated signal transducer and activator of transcription 5, and display enhanced miR-155 expression, when compared with nonlesional and healthy skin. Preliminary data show that aggressive antibiotic therapy is associated with decreased Y-phosphorylated signal transducer and activator of transcription 5 and miR-155 expression in lesional skin in two patients with Sézary syndrome. In conclusion, we show that S. aureus and its enterotoxins induce enhanced expression of oncogenic miR-155, providing mechanistic insight into the role of S. aureus in cutaneous T-cell lymphoma. Our findings support that environmental stimuli such as bacteria can fuel disease progression in cutaneous T-cell lymphoma.


Assuntos
Enterotoxinas/toxicidade , Linfoma Cutâneo de Células T/etiologia , MicroRNAs/fisiologia , Fator de Transcrição STAT5/fisiologia , Neoplasias Cutâneas/etiologia , Staphylococcus aureus/patogenicidade , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Humanos
12.
Cancers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466582

RESUMO

Perturbation in JAK-STAT signaling has been reported in the pathogenesis of cutaneous T cell lymphoma (CTCL). JAK3 is predominantly associated with the intra-cytoplasmic part of IL-2Rγc located in the plasma membrane of hematopoietic cells. Here we demonstrate that JAK3 is also ectopically expressed in the nucleus of malignant T cells. We detected nuclear JAK3 in various CTCL cell lines and primary malignant T cells from patients with Sézary syndrome, a leukemic variant of CTCL. Nuclear localization of JAK3 was independent of its kinase activity whereas STAT3 had a modest effect on nuclear JAK3 expression. Moreover, JAK3 nuclear localization was only weakly affected by blockage of nuclear export. An inhibitor of the nuclear export protein CRM1, Leptomycin B, induced an increased expression of SOCS3 in the nucleus, but only a weak increase in nuclear JAK3. Importantly, immunoprecipitation experiments indicated that JAK3 interacts with the nuclear protein POLR2A, the catalytic subunit of RNA Polymerase II. Kinase assays showed tyrosine phosphorylation of recombinant human Histone H3 by JAK3 in vitro-an effect which was blocked by the JAK inhibitor (Tofacitinib citrate). In conclusion, we provide the first evidence of nuclear localization of JAK3 in malignant T cells. Our findings suggest that JAK3 may have a cytokine-receptor independent function in the nucleus of malignant T cells, and thus a novel non-canonical role in CTCL.

13.
Dermatology ; 237(2): 283-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32799209

RESUMO

BACKGROUND: The thioredoxin-interacting protein (TXNIP) is involved in cellular metabolism and cell proliferation, and recently, deficient expression of TXNIP has been associated with progression and poor outcome for cancer patients. OBJECTIVES: To assess TXNIP expression and function in malignant T cells from cutaneous T-cell lymphoma (CTCL). METHODS: CTCL-derived malignant (MyLa2059, PB2B) and non-malignant (MyLa1850) cell lines were analysed by Western blotting and qPCR for TXNIP expression. Subsequently, the malignant CTCL cell lines were treated with GSK126 - an inhibitor of enhancer of zeste homolog 2 (EZH2) methyltransferase activity or assessed by bisulphite sequencing for TXNIP promoter methylation. Methylation was also assessed with the demethylating agent 5-azacytidine (5AZA). Finally, TXNIP was overexpressed in the malignant PB2B cell line via plasmid transduction, and the effect of TXNIP was further analysed by flow cytometry. RESULTS: We report on low expression of TXNIP protein in all cell lines representing different subtypes and stages of CTCL when compared to non-malignant T cells. Epigenetic silencing and other mechanisms were involved in the repression of TXNIP whereas forced expression of TXNIP strongly inhibited proliferation of malignant T cells. CONCLUSIONS: Epigenetic silencing and other as yet unknown mechanisms repress TXNIP expression in malignant T cells. As forced expression of TXNIP inhibits malignant proliferation, we propose that TXNIP is a putative tumour suppressor in CTCL.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Inativação Gênica , Humanos , Indóis/farmacologia , Regiões Promotoras Genéticas , Piridonas/farmacologia
14.
Dermatology ; 237(2): 277-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32335549

RESUMO

BACKGROUND: Mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL), is a lymphoproliferative disorder characterized by proliferation of malignant T cells in a chronic inflammatory environment in the skin. The nature of MF is still not fully understood, but aberrant microRNA (miR) expression and function seem to play an important role in the pathogenesis and disease progression and have been proposed as a putative disease marker. Recent studies have reported aberrant expression of miR-93 in situin MF lesions and linked dysregulated miR-93 expression to advanced stages of MF. However, the pathophysiological role of miR-93 in MF is unknown. OBJECTIVE: Here, we provide the first evidence that miR-93 targets the cell cycle regulator cyclin-dependent kinase inhibitor p21 and promotes growth of malignant T cells in MF. METHODS/RESULTS: Thus, inhibition of miR-93 in MF patient-derived malignant T-cell lines increases expression of p21 and inhibition of malignant proliferation. Notably, treatment with the histone deacetylase inhibitor Vorinostat (SAHA) reduces miR-93 expression and enhances p21 expression in the malignant T cells. Importantly, transfection with an miR-93 mimic partly blocks SAHA-induced p21 expression. CONCLUSIONS: we provide evidence that enhanced expression of the putative oncogenic miR, miR-93, represses the cell cycle inhibitor p21 and promotes proliferation of malignant T cells. Moreover, we demonstrate that SAHA triggers p21 expression - at least partly - through an inhibition of miR-93.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MicroRNAs/antagonistas & inibidores , Micose Fungoide/patologia , Neoplasias Cutâneas/patologia , Vorinostat/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , RNA Mensageiro/metabolismo
15.
Acta Derm Venereol ; 100(16): adv00270, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32556351

RESUMO

A prognostic 3-miRNA classifier for early-stage mycosis fungoides has been developed recently, with miR-106b providing the strongest prognostic power. The aim of this study was to investigate the molecular function of miR-106b in mycosis fungoides disease progression. The cellular localization of miR-106b in mycosis fungoides skin biopsies was determined by in situ hybridization. The regulatory role of miR-106b was assessed by transient miR-106b inhibitor/mimic transfection of 2 mycosis fungoides derived cell lines, followed by quantitative real-time PCR (RT-qPCR), western blotting and a proliferation assay. MiR-106b was found to be expressed by dermal T-lymphocytes in mycosis fungoides skin lesions, and miR-106b expression increased with advancing mycosis fungoides stage. Transfection of miR-106b in 2 mycosis fungoides derived cell lines showed that miR-106b represses the tumour suppressors cyclin-dependent kinase inhibitor 1 (p21) and thioredoxin-interacting protein (TXNIP) and promotes mycosis fungoides tumour cell proliferation. In conclusion, these results substantiate that miR-106b has both a functional and prognostic role in progression of mycosis fungoides.


Assuntos
MicroRNAs , Micose Fungoide , Neoplasias Cutâneas , Proteínas de Transporte , Proliferação de Células , Humanos , MicroRNAs/genética , Micose Fungoide/genética , Prognóstico , Neoplasias Cutâneas/genética
16.
Cancers (Basel) ; 12(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414221

RESUMO

Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL.

17.
Blood Cancer J ; 10(5): 57, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409671

RESUMO

Sézary syndrome (SS) is a heterogeneous leukemic subtype of cutaneous T-cell lymphoma (CTCL) with generalized erythroderma, lymphadenopathy, and a poor prognosis. Advanced disease is invariably associated with severe immune dysregulation and the majority of patients die from infectious complications caused by microorganisms such as, Staphylococcus aureus, rather than from the lymphoma per se. Here, we examined if staphylococcal enterotoxins (SE) may shape the phenotype of malignant SS cells, including expression of the regulatory T-cell-associated marker FOXP3. Our studies with primary and cultured malignant cells show that SE induce expression of FOXP3 in malignant cells when exposed to nonmalignant cells. Mutations in the MHC class II binding domain of SE-A (SEA) largely block the effect indicating that the response relies at least in part on the MHC class II-mediated antigen presentation. Transwell experiments show that the effect is induced by soluble factors, partly blocked by anti-IL-2 antibody, and depends on STAT5 activation in malignant cells. Collectively, these findings show that SE stimulate nonmalignant cells to induce FOXP3 expression in malignant cells. Thus, differences in exposure to environmental factors, such as bacterial toxins may explain the heterogeneous FOXP3 expression in malignant cells in SS.


Assuntos
Enterotoxinas/imunologia , Fatores de Transcrição Forkhead/genética , Síndrome de Sézary/imunologia , Neoplasias Cutâneas/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/imunologia , Humanos , Síndrome de Sézary/complicações , Síndrome de Sézary/genética , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/genética , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Regulação para Cima
18.
Oncoimmunology ; 9(1): 1751561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363124

RESUMO

Staphylococcus aureus and its toxins have been linked to disease progression and mortality in advanced stages of cutaneous T-cell lymphoma (CTCL). CD8+ T cells play a crucial role in anti-cancer responses and high CD8+ T cell numbers in tumor lesions are associated with a favorable prognosis in CTCL. Here, we show that CD8+ T cells from both healthy donors and Sézary syndrome patients are highly susceptible to cell death induced by Staphylococcal alpha-toxin, whereas malignant T cells are not. Importantly, alpha-toxin almost completely blocks cytotoxic killing of CTCL tumor cells by peptide-specific CD8+ T cells, leading to their escape from induced cell death and continued proliferation. These findings suggest that alpha-toxin may favor the persistence of malignant CTCL cells in vivo by inhibiting CD8+ T cell cytotoxicity. Thus, we propose a novel mechanism by which colonization with Staphylococcus aureus may contribute to cancer immune evasion and disease progression in CTCL.


Assuntos
Toxinas Bacterianas , Linfócitos T CD8-Positivos , Proteínas Hemolisinas , Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Humanos , Leucócitos Mononucleares , Linfoma Cutâneo de Células T/imunologia , Neoplasias Cutâneas/imunologia , Staphylococcus aureus
20.
Sci Rep ; 9(1): 16725, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723203

RESUMO

In addition to antigen-driven signals, T cells need co-stimulatory signals for robust activation. Several receptors, including members of the tumor necrosis factor receptor superfamily (TNFRSF), can deliver co-stimulatory signals to T cells. Thioredoxin interacting protein (TXNIP) is an important inhibitor of glucose uptake and cell proliferation, but it is unknown how TXNIP is regulated in T cells. The aim of this study was to determine expression levels and regulation of TXNIP in human T cells. We found that naïve T cells express high levels of TXNIP and that treatment of blood samples with TNF results in rapid down-regulation of TXNIP in the T cells. TNF-induced TXNIP down-regulation correlated with increased glucose uptake. Furthermore, we found that density gradient centrifugation (DGC) induced down-regulation of TXNIP. We demonstrate that DGC induced TNF production that paralleled the TXNIP down-regulation. Treatment of blood with toll-like receptor (TLR) ligands induced TNF production and TXNIP down-regulation, suggesting that damage-associated molecular patterns (DAMPs), such as endogenous TLR ligands, released during DGC play a role in DGC-induced TXNIP down-regulation. Finally, we demonstrate that TNF-induced TXNIP down-regulation is dependent on caspase activity and is caused by caspase-mediated cleavage of TXNIP.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Glucose/metabolismo , Linfócitos T/metabolismo , Receptores Toll-Like/agonistas , Fator de Necrose Tumoral alfa/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação para Baixo , Humanos , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA