Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 252: 115298, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966651

RESUMO

Here, we report on the design, synthesis, and biological evaluation of a new theranostic antibody drug conjugate (ADC), Cy5-Ab-SS-SN38, that consists of the HER2-specific antibody trastuzumab (Ab) connected to the near infrared (NIR) pentamethine cyanine dye Cy5 and SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is bound to an antibody through a glutathione-responsive self-immolative disulfide carbamate linker. For the first time, we explored this linker in ADC and found that it to reduce the drug release rate, which is important for safe drug delivery. The developed ADC exhibited specific accumulation and nanomolar anti-breast cancer activity on HER2-positive (HER2+) cell lines but no effect on HER2-. Animals treated with this ADC exhibited good tolerance. In vivo studies have shown that the ADC had good targeting ability for HER2+ tumors with much higher anticancer potency than trastuzumab itself or a mixture of trastuzumab with SN38. Side-by-side HER2+/HER2-xenograft at the 10 mg/kg dose exhibited specific accumulation and reduction of HER2+ tumor but not accumulation or growth inhibition of HER2-counterpart. The self-immolative disulfide linker implemented in this study was proven to be successful, broadening its utilization with other antibodies for targeted anticancer therapy in general. We believe that the theranostic ADCs comprising the glutathione-responsive self-immolative disulfide carbamate linker are applicable for the treatment and fluorescent monitoring of malignancies and anticancer drug delivery.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Animais , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Medicina de Precisão , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Glutationa
2.
Pharmaceutics ; 14(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890400

RESUMO

The epidermal growth factor-epidermal growth factor receptor (EGF-EGFR) pathway has become the main focus of selective chemotherapeutic intervention. As a result, two classes of EGFR inhibitors have been clinically approved, namely monoclonal antibodies and small molecule kinase inhibitors. Despite an initial good response rate to these drugs, most patients develop drug resistance. Therefore, new treatment approaches are needed. In this work, we aimed to find a new EGFR-specific, short cyclic peptide, which could be used for targeted drug delivery. Phage display peptide technology and biopanning were applied to three EGFR expressing cells, including cells expressing the EGFRvIII mutation. DNA from the internalized phage was extracted and the peptide inserts were sequenced using next-generation sequencing (NGS). Eleven peptides were selected for further investigation using binding, internalization, and competition assays, and the results were confirmed by confocal microscopy and peptide docking. Among these eleven peptides, seven showed specific and selective binding and internalization into EGFR positive (EGFR+ve) cells, with two of them-P6 and P9-also demonstrating high specificity for non-small cell lung cancer (NSCLC) and glioblastoma cells, respectively. These peptides were chemically conjugated to camptothecin (CPT). The conjugates were more cytotoxic to EGFR+ve cells than free CPT. Our results describe a novel cyclic peptide, which can be used for targeted drug delivery to cells overexpressing the EGFR and EGFRvIII mutation.

3.
J Control Release ; 343: 506-517, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150812

RESUMO

Photodynamic therapy (PDT) utilizing an organic dye (photosensitizer) capable of killing cancer cells in the body upon light irradiation is one of the promising non-invasive treatment modalities for many cancers. A known drawback of PDT is a side-effect caused by existing photosensitizers to organs due to insufficient specificity and accidental light exposure of a patient during the delivery of the photosensitizer in the bloodstream. To overcome this issue, we developed a novel antibody guided, activatable photosensitizing system, Ab-mI2XCy-Ac, where the trastuzumab (Ab) is linked to the non-active (not phototoxic and not fluorescent) dye, mI2XCy-Ac, that contains the hydroxyl group protected by acetyl (Ac). This targeting, non-photo-active conjugate was shown to be safely (without detectable side-effects) delivered to the targeted tumor, where it is activated by the esterase-mediated acetyl group cleavage and effectively treats the tumor upon NIR light irradiation. It was demonstrated in the Her2 positive BT-474 tumor mouse model that the treatment efficacy of the activatable photosensitizing system is about the same as for the permanently active photosensitizer, Ab-mI2XCy, while the side-effects are noticeably reduced. In addition, this activatable system enables fluorescence monitoring of the photosensitizer activation events.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Anticorpos , Linhagem Celular Tumoral , Fluorescência , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico
4.
Photodiagnosis Photodyn Ther ; 37: 102722, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032703

RESUMO

A facile synthesis, biological evaluation and photodynamic properties of novel activatable anticancer molecular hybrids (chimeras) Ch and I-Ch are described. The chimeras consist of DNA methylating methyl triazene moiety and fluorogenic xanthene-cyanine (XCy) or iodinated xanthene-cyanine (I-XCy) photosensitizer. These two anticancer core structures are bound by means of a self-immolative 4-aminobenzyl alcohol linker. The hydrolytic cleavage of the carbamate protecting group promotes activation of both DNA methylating monomethyl triazene and phototoxic xanthene-cyanine dye providing, in addition, a near-IR emission signal for detection of the drug activation events. Preliminary antiproliferative assay demonstrates that the developed chimeras exhibit higher antitumor activity in the breast cancer cell line upon near-IR light irradiation compared to their structural constituents, xanthene-cyanine photosensitizer and monomethyl triazene substance.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Linhagem Celular Tumoral , DNA/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Xantenos/química
5.
Harefuah ; 161(1): 42-48, 2022 Jan.
Artigo em Hebraico | MEDLINE | ID: mdl-35077060

RESUMO

INTRODUCTION: Monoclonal antibodies (mAbs) have become a novel therapeutic modality against cancer due to their specificity, affinity and serum stability. These incredible tools capable of linking variable payload, generate antibody drug conjugates (ADCs) that preserve targeting properties and therefore, specifically deliver drugs to the cancer cells. The drugs should exhibit sub-nano to picomolar cytotoxicity usually affecting fundamental oncogenic mechanisms via mitotic inhibition, DNA alkylation and topoisomerase poisoning. The linkers play a pivotal role in ADC design as they link the cytotoxic payload to the antibody. Linkers maintain the stability of the ADCs in the blood circulation securing their delivery to the cancer cell intact but cleaved when internalized to release the payload. Recently, a more advanced version of ADC, namely theranostic (therapeutic and diagnostic) ADC has emerged. These conjugates allow visualization of targeted drug delivery (TDD) vastly impacting the therapeutic index in cancer treatment. Among diagnostic probes, NIR fluorescent dyes provide important real-time information on the efficacy of drug delivery. A two-dye system comprising one switchable and one constantly light emitting cyanine (Cy) linkers provides the ratiometric quantification of the drug released in the tumor. Due to the enormous repertoire of mAbs, the theranostic ADCs can change the future of cancer diagnosis and treatment.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Preparações Farmacêuticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Imunoconjugados/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Medicina de Precisão
6.
ACS Med Chem Lett ; 12(10): 1596-1604, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34676042

RESUMO

We developed a highly potent anticancer agent, dolastatinol, which is a methylene hydroxyl derivative of dolastatin 10. Dolastatinol is a synthetic analog of dolastatin 10, synthesized by a solid-phase peptide Fmoc chemistry protocol on 2-chlorotrityl chloride resin utilizing a pH-triggering self-immolative monosuccinate linker. The introduction of the C-terminus hydroxyl methylene functionality preserves the anticancer properties of the parent dolastatin 10, including strong suppression of the cell proliferation, migration, high cytotoxicity. Our research establishes a new facile route toward the further development of C-terminus-modified dolastatin-10-based microtubule inhibitors for anticancer treatment.

7.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502483

RESUMO

We examined the effects of ALOS4, a cyclic peptide discovered previously by phage library selection against integrin αvß3, on a human melanoma (A375) xenograft model to determine its abilities as a potential anti-cancer agent. We found that ALOS4 promoted healthy weight gain in A375-engrafted nude mice and reduced melanoma tumor mass and volume. Despite these positive changes, examination of the tumor tissue did not indicate any significant effects on proliferation, mitotic index, tissue vascularization, or reduction of αSMA or Ki-67 tumor markers. Modulation in overall expression of critical downstream αvß3 integrin factors, such as FAK and Src, as well as reductions in gene expression of c-Fos and c-Jun transcription factors, indirectly confirmed our suspicions that ALOS4 is likely acting through an integrin-mediated pathway. Further, we found no overt formulation issues with ALOS4 regarding interaction with standard inert laboratory materials (polypropylene, borosilicate glass) or with pH and temperature stability under prolonged storage. Collectively, ALOS4 appears to be safe, chemically stable, and produces anti-cancer effects in a human xenograft model of melanoma. We believe these results suggest a role for ALOS4 in an integrin-mediated pathway in exerting its anti-cancer effects possibly through immune response modulation.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Eur J Med Chem ; 225: 113811, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34507011

RESUMO

A DNA intercalating agent Amonafide interferes with topoisomerase 2 (Topo II) activity and prevents re-ligation of DNA strands, leading to double strand breaks (DSB). If DSB repair fails, cells stop dividing and eventually die. In a search of approaches to enhance anti-cancer activities of Topo II inhibitors, we hypothesized that introduction of additional damage in proximity to the DSB may suppress DNA repair and enhance cancer cell killing. Accordingly, chimeric molecules were created that target a DNA alkylating component to the proximity of Topo II-induced DSBs. These chimeras consist of Amonafide or its 4-amino isomer, and DNA methylating methyl triazene moiety Azene protected with a carbamate group, connected via linker. Treatment of cancer cells with the chimeric molecules leads to significantly higher number of DSBs, which were repaired slower compared to Amonafide or monomethyl triazene-treated cells. On the other hand, methyl triazene linked to non-intercalating Amonafide analogs was ineffective. Together, these data strongly support our hypothesis. In line with increased DSBs, the chimeric molecules exhibited significantly higher antiproliferative activity in cancer cell lines compared to Amonafide or monomethyl triazene constituent Azene. We utilized the fluorescent properties of chimera Amonafidazene to develop ''photo-switchable'' reporting system to monitor the prodrug activation. Using this approach, we found that the chimera accumulated and was activated at the tumor sites specifically and demonstrated significantly stronger tumor suppressing activities compared to Amonafide in a xenograft model. Therefore, targeting alkylating groups to the proximity of DSB sites may become an effective approach towards enhancing anti-cancer activities of inhibitors of topoisomerases.


Assuntos
Adenina/farmacologia , Antineoplásicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Organofosfonatos/farmacologia , Adenina/síntese química , Adenina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Organofosfonatos/síntese química , Organofosfonatos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Anal Chem ; 93(23): 8265-8272, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34080851

RESUMO

Fluorescent dyes linked to drug delivery systems provide important real-time information on the efficacy of drug delivery. However, the quantitative monitoring of drug distribution is challenging because of interferences from the biological sample and instrumental setup. To improve quantification of anticancer drug delivery followed by drug release in tumor, we equipped an antibody-drug conjugate (ADC) with a turn-on near-infrared (NIR) dye, sensitive to drug release, and a reference NIR dye. In this study, chlorambucil (CLB) was chosen as a model anticancer drug and Trastuzumab monoclonal antibody specific to Her2 receptors overexpressed in many tumors was taken as the carrier. The advantage of the obtained dual-dye ratiometric system for drug release monitoring was demonstrated in mice model.


Assuntos
Antineoplásicos , Imunoconjugados , Animais , Anticorpos Monoclonais , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Corantes Fluorescentes , Camundongos , Trastuzumab
10.
Bioconjug Chem ; 32(8): 1641-1651, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34115936

RESUMO

Ratiometric measurements utilizing two independent fluorescence signals from a dual-dye molecular system help to improve the detection sensitivity and quantification of many analytical, bioanalytical, and pharmaceutical assays, including drug delivery monitoring. Nevertheless, these dual-dye conjugates have never been utilized for ratiometric monitoring of antibody (Ab)-guided targeted drug delivery (TDD). Here, we report for the first time on the new, dual-dye TDD system, Cy5s-Ab-Flu-Aza, comprising the switchable fluorescein-based dye (Flu) linked to the anticancer drug azatoxin (Aza), reference pentamethine cyanine dye (Cy5s), and Her2-specific humanized monoclonal Trastuzumab (Herceptin) antibody. The ability of ratiometric fluorescence monitoring of drug release was demonstrated with this model system in vitro in the example of the human breast cancer SKBR3 cell line overexpressing Her2 receptors. The proposed approach for designing ratiometric, antibody-guided TDD systems, where a "drug-switchable dye" conjugate and a reference dye are independently linked to an antibody, can be expanded to other drugs, dyes, and antibodies. Replacement of the green-emitting dye Flu, which was found not detectable in vivo, with a longer-wavelength (red or near-IR) switchable fluorophore should enable quantification of drug release in the body.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Indóis/administração & dosagem , Trastuzumab/administração & dosagem , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Estrutura Molecular
11.
Cancers (Basel) ; 13(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562300

RESUMO

It is well recognized today that anticancer drugs often are most effective when used in combination. However, the establishment of chemotherapy as key modality in clinical oncology began with sporadic discoveries of chemicals that showed antiproliferative properties and which as a first attempt were used as single agents. In this review we describe the development of chemotherapy from its origins as a single drug treatment with cytotoxic agents to polydrug therapy that includes targeted drugs. We discuss the limitations of the first chemotherapeutic drugs as a motivation for the establishment of combined drug treatment as standard practice in spite of concerns about frequent severe, dose limiting toxicities. Next, we introduce the development of targeted treatment as a concept for advancement within the broader field of small-molecule drug combination therapy in cancer and its accelerating progress that was boosted by recent scientific and technological progresses. Finally, we describe an alternative strategy of drug combinations using drug-conjugates for selective delivery of cytotoxic drugs to tumor cells that potentiates future improvement of drug combinations in cancer treatment. Overall, in this review we outline the development of chemotherapy from a pharmacological perspective, from its early stages to modern concepts of using targeted therapies for combinational treatment.

12.
Chem Biol Drug Des ; 97(2): 237-252, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32772433

RESUMO

The efficient synthesis of molecular hybrids including a DNA-intercalating 9-anilinoacridine (9-AnA) core and a methyl triazene DNA-methylating moiety is described. Nucleophilic aromatic substitution (SN Ar) and electrophilic aromatic substitution (EAS) reactions using readily accessible starting materials provide a quick entry to novel bifunctional anticancer molecules. The chimeras were evaluated for their anticancer activity. Chimera 7b presented the highest antitumor activity at low micromolar IC50 values in antiproliferative assays performed with various cancer cell lines. In comparison, compound 7b outperformed DNA-intercalating drugs like amsacrine and AHMA. Mechanistic studies of chimera 7b suggest a dual mechanism of action: methylation of the DNA-repairing protein MGMT associated with the triazene structural portion and Topo II inhibition by intercalation of the acridine core.


Assuntos
Amsacrina/análogos & derivados , Antineoplásicos/síntese química , Triazenos/química , Amsacrina/química , Amsacrina/metabolismo , Amsacrina/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/metabolismo , Triazenos/metabolismo , Triazenos/farmacologia
13.
ChemMedChem ; 14(19): 1727-1734, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31403246

RESUMO

Targeted drug delivery (TDD) is an efficient strategy for cancer treatment. However, the real-time monitoring of drug delivery is still challenging because of a pronounced lack of TDD systems capable of providing a near-infrared (NIR) fluorescence signal for the detection of drug-release events. Herein, a new TDD system, comprising a turn-on NIR fluorescent reporter attached to an anticancer drug and targeting peptide, is reported. This system provides both TDD and NIR fluorescence monitoring of drug-release events in target tissue. In this TDD system, a new carboxy-derivatized xanthene-cyanine (XCy) dye is attached to an anticancer drug, chlorambucil (CLB), through a hydrolytically cleavable ester linker and coupled to a targeting peptide, octreotide amide (OCTA), which is specific to somatostatin receptors SSTR-2 and STTR-5 overexpressed on many tumor cells. This OCTA-G-XCy-CLB (G: γ-aminobutyric acid) conjugate exhibits no detectable fluorescence, whereas, upon the hydrolytic cleavage of the ester linker, a bright NIR fluorescence appears at λ≈710 nm; this signals release of the drug. Real-time TDD monitoring is demonstrated for the example of the human pancreatic cancer cell line overexpressing SSTR-2 and STTR-5, in comparison with the noncancerous Chinese hamster ovary cell line, which contains a reduced number of these receptors.


Assuntos
Carbocianinas/química , Clorambucila/química , Portadores de Fármacos/química , Fluorenos/química , Octreotida/metabolismo , Resinas Sintéticas/química , Xantenos/química , Aminobutiratos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Carbocianinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/farmacologia , Cricetulus , Portadores de Fármacos/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular/métodos , Receptores de Somatostatina/química , Receptores de Somatostatina/genética , Xantenos/metabolismo
14.
Data Brief ; 25: 104052, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31198832

RESUMO

The data presented here refer to a research article entitled "Self-Assembled Micellar Clusters Based on Triton-X-family Surfactants for Enhanced Solubilization, Encapsulation, Proteins Permeability Control, and Anticancer Drug Delivery" Solomonov et al., 2019. The present article provides the General Procedure for clusterization of Triton-X-based micelles and the effect of (i) metal ion, surfactant, and chelator concentration on the developed clusters formation, (ii) surfactant-chelator relation change, (iii) metal ion-micelles concertation ratio variation, (iv) metal ion replacement, (v) solvent replacement, (vi) kinetics of clusters formation, (vii) hydrophobic fluorescent dye (Coumarin 6) solubilization in aqueous MCs media, (viii) novel anticancer peptidyl drug synthesis and characterization and (ix) the viability of HeLa cells with and without the presence of drug-free Triton-X-based family MCs. These data provide additional insights useful for understanding all aspects of the micellar clusters formation, optimization, and control.

15.
Mater Sci Eng C Mater Biol Appl ; 99: 794-804, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889754

RESUMO

Non-ionic surfactants have raised a considerable interest for solubilization, encapsulation, permeabilization and controlled release of various compounds due to their unique physicochemical properties. Nevertheless, it is still challenging to create convenient self-assembled multifunctional materials with high solubilization and encapsulation capacities by preserving their advanced capabilities to protect loaded cargos without altering their characteristics. In this work, we present an extended concept of micellar clusters (MCs) formation based on partial entrapment and stabilization of chelate ligands by hydrophobic forces found on the non-ionic surfactant micelle interface of the Triton-X family (TX-100/TX-114), followed by subsequent complexation of the preformed structures either by metal ions or a supporting chelator. The formation aspects, inner structure and the role of external factors such as the addition of competitive ligands have been extensively studied. MCs loaded by hydrophobic fluorescent compounds with high encapsulation efficiency demonstrate an excellent optical response in aqueous media without crystallization as well as sufficient increase in solubility of toxic hydrophobic compounds such as bilirubin (>50 times compared to pure surfactants). Furthermore, Triton-X-based MCs provide a unique feature of selective permeability to hydrophilic ligand-switching proteins such as UnaG and BSA demonstrating bright "turn-on" fluorescence signal either inside the cluster or on its interface via complexation. The proposed strategies allowed us to successfully encapsulate and visualize a newly synthesized, highly hydrophobic anticancer PTR-58-CLB-CAMP peptide drug, while MCs loaded by the drug exhibit a considerable antitumor activity against HeLa cells.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Micelas , Polietilenoglicóis/química , Tensoativos/química , Quelantes/química , Eletrólitos/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Íons , Ferro/análise , Cinética , Ligantes , Tamanho da Partícula , Permeabilidade , Solubilidade , Soluções , Solventes/química , Temperatura
16.
Med Chem ; 15(5): 537-549, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30501600

RESUMO

BACKGROUND: Scientists have extensively investigated curcumin, yielding many publications on treatments of cancer. Numerous derivatives of curcumin were synthesized, evaluated for their anti-oxidant and free-radical scavenging, SAR, ADME properties and tested in anticancer applications. OBJECTIVE: We decided to exploit curcumin as a bioactive core platform for carrying anticancer drugs, which likely possesses a carboxyl moiety for potential linkage to the carrier for drug delivery. METHODS: The goal of this work is to develop biolabile multifunctional curcumin platforms towards anticancer drug delivery, including determination of drug release profiling in hydrolytic media, in vitro cytotoxicity, antioxidant properties and blockage of relevant cell survival pathways. RESULTS: We report on a facile synthesis of the bioactive multifunctional curcumin-based platforms linked to a variety of anticancer drugs like amonafide and chlorambucil, and release of the drugs in a hydrolytic environment. The leading curcumin-based platform has presented antioxidant activity similar to curcumin, but with much more potent cytotoxicity in vitro in agreement with the augmented blockage of the NF-kB cell survival pathway. CONCLUSION: The approach presented here may prove beneficial for bioactive curcumin-based delivery applications where multiple drug delivery is required in a consecutive and controlled mode.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Portadores de Fármacos/química , Adenina , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Linhagem Celular Tumoral , Clorambucila/síntese química , Clorambucila/química , Clorambucila/farmacologia , Curcumina/síntese química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Humanos , Naftalimidas/síntese química , Naftalimidas/química , Naftalimidas/farmacologia , Organofosfonatos , Fosforilação/efeitos dos fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Fator de Transcrição RelA/metabolismo
17.
RSC Adv ; 9(56): 32656-32664, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529716

RESUMO

Conjugation of an anticancer drug with a cancer-specific carrier and a fluorescent dye to form a theranostic system enables real time monitoring of targeted drug delivery (TDD). However, the fluorescence signal from the dye is affected by the light absorption and scattering in the body, photobleaching, and instrumental parameters. Ratiometric measurements utilizing two fluorescence signals of different wavelengths are known to improve sensitivity, reliability and quantitation of fluorescence measurements in biological media. Herein, a novel theranostic system comprising the anticancer drug chlorambucil (CLB), cancer-specific peptide octreotide amide (OctA), and a long-wavelength dual fluorescent cyanine dye IRD enabling ratiometric monitoring of drug delivery was developed and evaluated on the cancer cell line PANC-1.

18.
J Nanobiotechnology ; 16(1): 34, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29602308

RESUMO

BACKGROUND: Peptide-drug-conjugates (PDCs) are being developed as an effective strategy to specifically deliver cytotoxic drugs to cancer cells. However one of the challenges to their successful application is the relatively low stability of peptides in the blood, liver and kidneys. Since AuNPs seem to have a longer plasma half-life than PDCs, one approach to overcoming this problem would be to conjugate the PDCs to gold nanoparticles (AuNPs), as these have demonstrated favorable physico-chemical and safety properties for drug delivery systems. We set out to test whether PEG coated-AuNPs could provide a suitable platform for the non-covalent loading of pre-formed PDCs and whether this modification would affect the bioavailability of the PDCs and their cytotoxicity toward target cancer cells. METHODS: Peptides specifically internalized by A20 murine lymphoma cells were isolated from a phage library displaying 7mer linear peptides. Peptide specificity was validated by flow cytometry and confocal microscopy. PDCs were synthesized containing a selected peptide (P4) and either chlorambucil (Chlor), melphalan (Melph) or bendamustine (Bend). Gold nanoparticles were sequentially coated with citrate, PEG-6000 and then PDC (PDC-PEG-AuNP). The physico-chemical properties of the coated particles were analyzed by electrophoresis, TEM, UV-VIS and FTIR. Stability of free and PDC-coated AuNP was determined. RESULTS: Biopanning of the phage library resulted in discovery of several novel peptides that internalized into A20 cells. One of these (P4) was used to synthesize PDCs containing either Chlor, Melph or Bend. All three PDCs specifically killed A20 target cells, however they had short half-lives ranging from 10.6 to 15.4 min. When coated to PEG-AuNPs, the half-lives were extended to 21.0-22.3 h. The PDC-PEG-AuNPs retained cytotoxicity towards the target cells. Moreover, whereas pre-incubation for 24 h of free PDCs almost completely abolished their cytotoxic activity, the PDC-PEG-AuNPs were still active even after 72 h pre-incubation. CONCLUSIONS: Peptide-drug-conjugates hold potential for improving the target efficacy of chemotherapeutic drugs, however their short half-lives may limit their application. This hurdle can be overcome by easily conjugating them to gold nanoparticles. This conjugation also opens up the possibility of developing slow release formulations of targeted drug delivery systems containing PDCs.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro/farmacologia , Nanopartículas Metálicas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ouro/química , Humanos , Nanopartículas Metálicas/ultraestrutura , Camundongos , Biblioteca de Peptídeos , Preparações Farmacêuticas/metabolismo , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Oncotarget ; 8(1): 757-768, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768593

RESUMO

The newly discovered short (9 amino acid) non-RGD S-S bridged cyclic peptide ALOS-4 (H-cycl(Cys-Ser-Ser-Ala-Gly-Ser-Leu-Phe-Cys)-OH), which binds to integrin αvß3 is investigated as peptide carrier for targeted drug delivery against human metastatic melanoma. ALOS4 binds specifically the αvß3 overexpressing human metastatic melanoma WM-266-4 cell line both in vitro and in ex vivo assays. Coupling ALOS4 to the topoisomerase I inhibitor Camptothecin (ALOS4-CPT) increases the cytotoxicity of CPT against human metastatic melanoma cells while reduces dramatically the cytotoxicity against non-cancerous cells as measured by the levels of γH2A.X, active caspase 3 and cell viability. Moreover, conjugating ALOS4 to CPT even increases the chemo-stability of CPT under physiological pH. Bioinformatic analysis using Rosetta platform revealed potential docking sites of ALOS4 on the αvß3 integrin which are distinct from the RGD binding sites. We propose to use this specific non-RGD cyclic peptide as the therapeutic carrier for conjugation of drugs in order to improve efficacy and reduce toxicity of currently available treatments of human malignant melanoma.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Animais , Antineoplásicos/síntese química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/síntese química , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncotarget ; 7(39): 63549-63560, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27556860

RESUMO

ALOS4, a unique synthetic cyclic peptide without resemblance to known integrin ligand sequences, was discovered through repeated biopanning with pIII phage expressing a disulfide-constrained nonapeptide library. Binding assays using a FITC-labeled analogue demonstrated selective binding to immobilized αvß3 and a lack of significant binding to other common proteins, such as bovine serum albumin and collagen. In B16F10 cell cultures, ALOS4 treatment at 72 h inhibited cell migration (30%) and adhesion (up to 67%). Immunofluorescent imaging an ALOS4-FITC analogue with B16F10 cells demonstrated rapid cell surface binding, and uptake and localization in the cytoplasm. Daily injections of ALOS4 (0.1, 0.3 or 0.5 mg/kg i.p.) to mice inoculated with B16F10 mouse melanoma cells in two different cancer models, metastatic and subcutaneous tumor, resulted in reduction of lung tumor count (metastatic) and tumor mass (subcutaneous) and increased survival of animals monitored to 45 and 60 days, respectively. Examination of cellular activity indicated that ALOS4 produces inhibition of cell migration and adhesion in a concentration-dependent manner. Collectively, these results suggest that ALOS4 is a structurally-unique selective αvß3 integrin ligand with potential anti-metastatic activity.


Assuntos
Integrina alfaVbeta3/metabolismo , Neoplasias Pulmonares/prevenção & controle , Melanoma Experimental/prevenção & controle , Peptídeos Cíclicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA