Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Urol ; 40(3): 739-746, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34859284

RESUMO

PURPOSE: Thioredoxins are major regulatory proteins of oxidative signaling. Trx1 is the most prominent thioredoxin and, therefore, the current study sought to evaluate the prognostic role of Trx1 in ccRCC. METHODS AND PATIENTS: A tissue micro-array (TMA) study was carried out to evaluate the association of Trx1 with clinicopathological features and survival outcome. Data from the Cancer Genome Atlas (TCGA) were evaluated for the association of characteristics in the Trx1 gene with clinicopathological features and survival outcome. RESULTS: In the TMA, patients with ccRCC that had high Trx1 levels had lower T stages (p < 0.001), less often distant metastases (p = 0.018), lower nuclear grades (p < 0.001), and less often tumor necrosis (p = 0.037) or sarcomatoid features (p = 0.008). Patients with a combined score of ≥ 10 had better DSS than patients with a low combined score of < 10 (HR 95% CI 0.62 (0.39-0.98)). Interestingly, the survival outcome is compartment specific: ccRCC patients whose tumors had exclusively Trx1 expression in the cytoplasm had the worst survival outcome (HR 3.1; 95% CI 1.2-8.0). Genomic data from the TCGA demonstrated that patients with ccRCCs that had Trx1 losses had more advanced clinicopathological features and worse survival outcome in disease specific (p < 0.001), overall (p = 0.001), and progression free survival (p = 0.001) when compared to patients with ccRCCs without copy number variations (CNV) or gains. CONCLUSION: The current study suggests a possible role of Trx1 in the tumor biology of ccRCC and thus, the current study strongly advises in depth investigations of redox signaling pathways in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Tiorredoxinas , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Variações do Número de Cópias de DNA , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Oxirredução , Prognóstico , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Cell Death Dis ; 12(11): 953, 2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34657120

RESUMO

Many cell death pathways, including apoptosis, regulated necrosis, and ferroptosis, are relevant for neuronal cell death and share common mechanisms such as the formation of reactive oxygen species (ROS) and mitochondrial damage. Here, we present the role of the actin-regulating protein cofilin1 in regulating mitochondrial pathways in oxidative neuronal death. Cofilin1 deletion in neuronal HT22 cells exerted increased mitochondrial resilience, assessed by quantification of mitochondrial ROS production, mitochondrial membrane potential, and ATP levels. Further, cofilin1-deficient cells met their energy demand through enhanced glycolysis, whereas control cells were metabolically impaired when challenged by ferroptosis. Further, cofilin1 was confirmed as a key player in glutamate-mediated excitotoxicity and associated mitochondrial damage in primary cortical neurons. Using isolated mitochondria and recombinant cofilin1, we provide a further link to toxicity-related mitochondrial impairment mediated by oxidized cofilin1. Our data revealed that the detrimental impact of cofilin1 on mitochondria depends on the oxidation of cysteine residues at positions 139 and 147. Overall, our findings show that cofilin1 acts as a redox sensor in oxidative cell death pathways of ferroptosis, and also promotes glutamate excitotoxicity. Protective effects by cofilin1 inhibition are particularly attributed to preserved mitochondrial integrity and function. Thus, interfering with the oxidation and pathological activation of cofilin1 may offer an effective therapeutic strategy in neurodegenerative diseases.


Assuntos
Cofilina 1/metabolismo , Mitocôndrias/patologia , Neurônios/patologia , Estresse Oxidativo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cofilina 1/deficiência , Regulação para Baixo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Glicólise/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piperazinas/toxicidade , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia
3.
J Cancer Res Clin Oncol ; 147(12): 3565-3576, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499221

RESUMO

PURPOSE: Although p53 is rarely mutated in ccRCC, its overexpression has been linked to poor prognosis. The current study sought to elucidate the unique role of p53 in ccRCC with genomic, proteomic, and functional analyses. MATERIALS AND METHODS: Data from the Cancer Genome Atlas (TCGA) were evaluated for genomic and proteomic characteristics of p53; a tissue micro array (TMA) study was carried out to evaluate the association of p53 and phosphorylated p53 (pp53) with clinical outcome. Mechanistic in vitro experiments were performed to confirm a pro-apoptotic loss of p53 in ccRCC and p53 isoforms as well as posttranslational modifications of p53 where assessed to provide possible reasons for a functional inhibition of p53 in ccRCC. RESULTS: A low somatic mutation rate of p53 could be confirmed. Although mRNA levels were correlated with poor prognosis and clinicopathological features, there was no monotonous association of mRNA levels with survival outcome. Higher p53 protein levels could be confirmed as poor prognostic features. In vitro, irradiation of ccRCC cell lines markedly induced levels of p53 and of activated (phosphorylated) p53. However, irradiated ccRCC cells demonstrated similar proliferation, migration, and p53 transcriptional activity like non-irradiated controls indicating a functional inhibition of p53. p53 isoforms and could not be correlated with clinical outcome of ccRCC patients. CONCLUSIONS: p53 is rarely mutated but the wildtype p53 is functionally inhibited in ccRCC. To investigate mechanisms that underlie functional inhibition of p53 may provide attractive therapeutic targets in ccRCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Carcinoma de Células Renais/genética , Feminino , Humanos , Neoplasias Renais/genética , Masculino , Mutação , Transcriptoma , Proteína Supressora de Tumor p53/genética
4.
Oxid Med Cell Longev ; 2021: 6621292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122725

RESUMO

The mammalian cytosolic thioredoxin (Trx) system consists of Trx1 and its reductase, the NADPH-dependent seleno-enzyme TrxR1. These proteins function as electron donor for metabolic enzymes, for instance in DNA synthesis, and the redox regulation of numerous processes. In this work, we analysed the interactions between these two proteins. We proposed electrostatic complementarity as major force controlling the formation of encounter complexes between the proteins and thus the efficiency of the subsequent electron transfer reaction. If our hypothesis is valid, formation of the encounter complex should be independent of the redox reaction. In fact, we were able to confirm that also a redox inactive mutant of Trx1 lacking both active site cysteinyl residues (C32,35S) binds to TrxR1 in a similar manner and with similar kinetics as the wild-type protein. We have generated a number of mutants with alterations in electrostatic properties and characterised their interaction with TrxR1 in kinetic assays. For human Trx1 and TrxR1, complementary electrostatic surfaces within the area covered in the encounter complex appear to control the affinity of the reductase for its substrate Trx. Electrostatic compatibility was even observed in areas that do not form direct molecular interactions in the encounter complex, and our results suggest that the electrostatic complementarity in these areas influences the catalytic efficiency of the reduction. The human genome encodes ten cytosolic Trx-like or Trx domain-containing proteins. In agreement with our hypothesis, the proteins that have been characterised as TrxR1 substrates also show the highest similarity in their electrostatic properties.


Assuntos
Oxirredutases/metabolismo , Tiorredoxinas/metabolismo , Humanos
5.
J Biol Chem ; 296: 100247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361108

RESUMO

Environmental sequence data of microbial communities now makes up the majority of public genomic information. The assignment of a function to sequences from these metagenomic sources is challenging because organisms associated with the data are often uncharacterized and not cultivable. To overcome these challenges, we created a rationally designed expression library of metagenomic proteins covering the sequence space of the thioredoxin superfamily. This library of 100 individual proteins represents more than 22,000 thioredoxins found in the Global Ocean Sampling data set. We screened this library for the functional rescue of Escherichia coli mutants lacking the thioredoxin-type reductase (ΔtrxA), isomerase (ΔdsbC), or oxidase (ΔdsbA). We were able to assign functions to more than a quarter of our representative proteins. The in vivo function of a given representative could not be predicted by phylogenetic relation but did correlate with the predicted isoelectric surface potential of the protein. Selected proteins were then purified, and we determined their activity using a standard insulin reduction assay and measured their redox potential. An unexpected gel shift of protein E5 during the redox potential determination revealed a redox cycle distinct from that of typical thioredoxin-superfamily oxidoreductases. Instead of the intramolecular disulfide bond formation typical for thioredoxins, this protein forms an intermolecular disulfide between the attacking cysteines of two separate subunits during its catalytic cycle. Our functional metagenomic approach proved not only useful to assign in vivo functions to representatives of thousands of proteins but also uncovered a novel reaction mechanism in a seemingly well-known protein superfamily.


Assuntos
Monitoramento Ambiental , Glutarredoxinas/genética , Metagenômica , Tiorredoxinas/genética , Catálise , Cisteína/química , Escherichia coli/genética , Glutarredoxinas/química , Glutarredoxinas/classificação , Família Multigênica/genética , Oceanos e Mares , Oxirredução , Filogenia , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/química , Tiorredoxinas/classificação
6.
Biochem Soc Trans ; 48(2): 613-620, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32219383

RESUMO

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


Assuntos
Proteínas dos Microfilamentos/fisiologia , Oxigenases de Função Mista/fisiologia , Oxirredução , Transdução de Sinais , Animais , Catálise , Cisteína/química , Proteínas do Citoesqueleto/metabolismo , Genoma , Humanos , Peróxido de Hidrogênio/química , Cinética , Oxirredutases/metabolismo , Oxigênio/metabolismo , Fosforilação , Ligação Proteica
7.
Biochim Biophys Acta Gen Subj ; 1864(7): 129599, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173377

RESUMO

BACKROUND: Cytosolic glutaredoxin 2 (Grx2c) controls axonal outgrowth and is specifically induced in many cancer cell lines. We thus hypothesized that Grx2c promotes cell motility and invasiveness. METHODS: We characterized the impact of Grx2c expression in cell culture models. We combined stable isotope labeling, phosphopeptide enrichment, and high-accuracy mass spectrometry to characterize the underlying mechanisms. RESULTS: The most prominent associations were found with actin dynamics, cellular adhesion, and receptor-mediated signal transduction, processes that are crucial for cell motility. For instance, collapsin response mediator protein 2, a protein involved in the regulation of cytoskeletal dynamics, is regulated by Grx2c through a redox switch that controls the phosphorylation state of the protein as well. Cell lines expressing Grx2c showed dramatic alterations in morphology. These cells migrated two-fold faster and gained the ability to infiltrate a collagen matrix. CONCLUSIONS: The expression of Grx2c promotes cell migration, and may negatively correlate with cancer-specific survival. GENERAL SIGNIFICANCE: Our results imply critical roles of Grx2c in cytoskeletal dynamics, cell adhesion, and cancer cell invasiveness.


Assuntos
Glutarredoxinas , Neoplasias , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Glutarredoxinas/química , Humanos , Isoformas de Proteínas/metabolismo , Transdução de Sinais
8.
Biochim Biophys Acta ; 1850(6): 1274-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25735211

RESUMO

BACKGROUND: Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion. METHODS: We have analyzed the regulation and potential functions of Trx family proteins during hypoxia/ischemia and reoxygenation of the developing brain in both an animal and a cellular model of perinatal asphyxia. We have analyzed the distribution of 14 Trx family and related proteins in the cerebellum, striatum, and hippocampus, three areas of the rat brain that are especially susceptible to hypoxia. Using SH-SY5Y cells subjected to hypoxia and reoxygenation, we have analyzed the functions of some redoxins suggested by the animal experiment. RESULTS AND CONCLUSIONS: We have described/discovered a complex, cell-type and tissue-specific expression pattern following the hypoxia/ischemia and reoxygenation. Particularly, Grx2 and Trx1 showed distinct changes during tissue recovery following hypoxia/ischemia and reoxygenation. Silencing of these proteins in SH-SY5Y cells subjected to hypoxia-reoxygenation confirmed that these proteins are required to maintain the normal neuronal phenotype. GENERAL SIGNIFICANCE: These findings demonstrate the significance of redox signaling in cellular pathways. Grx2 and Trx1 contribute significantly to neuronal integrity and could be clinically relevant in neuronal damage following perinatal asphyxia and other neuronal disorders.


Assuntos
Asfixia Neonatal/enzimologia , Encéfalo/enzimologia , Glutarredoxinas/metabolismo , Hipóxia-Isquemia Encefálica/enzimologia , Neurônios/enzimologia , Tiorredoxinas/metabolismo , Animais , Asfixia Neonatal/patologia , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glutarredoxinas/genética , Humanos , Hipóxia-Isquemia Encefálica/patologia , Masculino , Neurônios/patologia , Oxirredução , Oxigênio/metabolismo , Fenótipo , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Tiorredoxinas/genética , Fatores de Tempo , Transfecção
9.
Biochim Biophys Acta ; 1850(8): 1575-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25450486

RESUMO

BACKGROUND: The cytoskeleton, unlike the bony vertebrate skeleton or the exoskeleton of invertebrates, is a highly dynamic meshwork of protein filaments that spans through the cytosol of eukaryotic cells. Especially actin filaments and microtubuli do not only provide structure and points of attachments, but they also shape cells, they are the basis for intracellular transport and distribution, all types of cell movement, and--through specific junctions and points of adhesion--join cells together to form tissues, organs, and organisms. SCOPE OF REVIEW: The fine tuned regulation of cytoskeletal dynamics is thus indispensible for cell differentiation and all developmental processes. Here, we discussed redox signalling mechanisms that control this dynamic remodeling. Foremost, we emphasised recent discoveries that demonstrated reversible thiol and methionyl switches in the regulation of actin dynamics. MAJOR CONCLUSIONS: Thiol and methionyl switches play an essential role in the regulation of cytoskeletal dynamics. GENERAL SIGNIFICANCE: The dynamic remodeling of the cytoskeleton is controlled by various redox switches. These mechanisms are indispensible during development and organogenesis and might contribute to numerous pathological conditions. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Assuntos
Desdiferenciação Celular/fisiologia , Diferenciação Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Animais , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Oxirredução
10.
J Biol Chem ; 288(49): 35117-25, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24133216

RESUMO

Vertebrate-specific glutaredoxin 2 (Grx2) is expressed in at least two isoforms, mitochondrial Grx2a and cytosolic Grx2c. We have previously shown that cytosolic Grx2 is essential for embryonic development of the brain. In particular, we identified collapsin response mediator protein 2 (CRMP2/DPYSL2), a mediator of the semaphorin-plexin signaling pathway, as redox-regulated target of Grx2c and demonstrated that this regulation is required for normal axonal outgrowth. In this study, we demonstrate the molecular mechanism of this regulation, a specific and reversible intermolecular Cys-504-Cys-504 dithiol-disulfide switch in homotetrameric CRMP2. This switch determines two conformations of the quaternary CRMP2 complex that controls axonal outgrowth and thus neuronal development.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Neurológicos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Sequência de Aminoácidos , Diferenciação Celular , Linhagem Celular , Cisteína/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Neurogênese , Oxirredução , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
EMBO Mol Med ; 5(12): 1852-70, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24136784

RESUMO

The respiratory pathogen Streptococcus pneumoniae has evolved efficient mechanisms to resist oxidative stress conditions and to displace other bacteria in the nasopharynx. Here we characterize at physiological, functional and structural levels two novel surface-exposed thioredoxin-family lipoproteins, Etrx1 and Etrx2. The impact of both Etrx proteins and their redox partner methionine sulfoxide reductase SpMsrAB2 on pneumococcal pathogenesis was assessed in mouse virulence studies and phagocytosis assays. The results demonstrate that loss of function of either both Etrx proteins or SpMsrAB2 dramatically attenuated pneumococcal virulence in the acute mouse pneumonia model and that Etrx proteins compensate each other. The deficiency of Etrx proteins or SpMsrAB2 further enhanced bacterial uptake by macrophages, and accelerated pneumococcal killing by H2 O2 or free methionine sulfoxides (MetSO). Moreover, the absence of both Etrx redox pathways provokes an accumulation of oxidized SpMsrAB2 in vivo. Taken together our results reveal insights into the role of two extracellular electron pathways required for reduction of SpMsrAB2 and surface-exposed MetSO. Identification of this system and its target proteins paves the way for the design of novel antimicrobials.


Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Modelos Animais de Doenças , Feminino , Peróxido de Hidrogênio/farmacologia , Macrófagos/imunologia , Macrófagos/fisiologia , Metionina/análogos & derivados , Metionina/farmacologia , Camundongos , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Fagocitose , Pneumonia/imunologia , Pneumonia/microbiologia , Pneumonia/mortalidade , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Streptococcus pneumoniae/patogenicidade , Análise de Sobrevida , Virulência
12.
Proc Natl Acad Sci U S A ; 108(51): 20532-7, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22139372

RESUMO

Cellular functions and survival are dependent on a tightly controlled redox potential. Currently, an increasing amount of data supports the concept of local changes in the redox environment and specific redox signaling events controlling cell function. Specific protein thiol groups are the major targets of redox signaling and regulation. Thioredoxins and glutaredoxins catalyze reversible thiol-disulfide exchange reactions and are primary regulators of the protein thiol redox state. Here, we demonstrate that embryonic brain development depends on the enzymatic activity of glutaredoxin 2. Zebrafish with silenced expression of glutaredoxin 2 lost virtually all types of neurons by apoptotic cell death and the ability to develop an axonal scaffold. As demonstrated in zebrafish and in a human cellular model for neuronal differentiation, glutaredoxin 2 controls axonal outgrowth via thiol redox regulation of collapsin response mediator protein 2, a central component of the semaphorin pathway. This study provides an example of a specific thiol redox regulation essential for vertebrate embryonic development.


Assuntos
Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Glutarredoxinas/química , Peixe-Zebra/embriologia , Animais , Apoptose , Axônios/fisiologia , Linhagem Celular Tumoral , Biologia do Desenvolvimento , Glutarredoxinas/genética , Humanos , Neuritos/metabolismo , Oxirredução , Proteínas Recombinantes/química , Transdução de Sinais , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA