Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883190

RESUMO

BACKGROUND: In Lewy body diseases (LBDs) Parkinson disease (PD), and dementia with Lewy bodies (DLB), by the time parkinsonism or cognitive dysfunction manifests clinically, substantial neurodegeneration has already occurred. Biomarkers are needed to identify central LBDs in a preclinical phase, when neurorescue strategies might forestall symptomatic disease. This phase may involve catecholamine deficiency in the autonomic nervous system. We analyzed data from the prospective, observational, long-term PDRisk study to assess the predictive value of low versus normal cardiac 18F-dopamine positron emission tomography (PET), an index of myocardial content of the sympathetic neurotransmitter norepinephrine, in at-risk individuals. METHODS: Participants self-reported risk factor information (genetics, olfactory dysfunction, dream enactment behavior, and orthostatic intolerance or hypotension) at a protocol-specific website. Thirty-four with 3 or more confirmed risk factors underwent serial cardiac 18F-dopamine PET at 1.5-year intervals for up to 7.5 years or until PD was diagnosed. RESULTS: Nine participants had low initial myocardial 18F-dopamine-derived radioactivity (<6,000 nCi-kg/cc-mCi) and 25 had normal radioactivity. At 7 years of follow-up, 8 of 9 with low initial radioactivity and 1 of 11 with normal radioactivity were diagnosed with a central LBD (LBD+) (P = 0.0009 by Fisher's exact test). Conversely, all 9 LBD+ participants had low 18F-dopamine-derived radioactivity before or at the time of diagnosis of a central LBD, whereas among 25 participants without a central LBD only 1 (4%) had persistently low radioactivity (P < 0.0001 by Fisher's exact test). CONCLUSION: Cardiac 18F-dopamine PET highly efficiently distinguishes at-risk individuals who are diagnosed subsequently with a central LBD from those who are not. CLINICALTRIALS: gov NCT00775853. FUNDING: Division of Intramural Research, NIH, NINDS.


Assuntos
Dopamina , Doença de Parkinson , Humanos , Estudos Prospectivos , Corpos de Lewy , Tomografia por Emissão de Pósitrons/métodos , Doença de Parkinson/diagnóstico por imagem , Norepinefrina
2.
Artigo em Inglês | MEDLINE | ID: mdl-34731744

RESUMO

BACKGROUND: Coffee is one of the most frequently consumed beverages worldwide. Research on effects of coffee drinking has focused on caffeine; however, coffee contains myriad biochemicals that are chemically unrelated to caffeine, including 3,4-dihydroxyphenyl compounds (catechols) such as caffeic acid and dihydrocaffeic acid (DHCA). OBJECTIVE: This prospective within-subjects study examined effects of drinking caffeinated or decaffeinated coffee on plasma free (unconjugated) catechols measured by liquid chromatography with series electrochemical detection (LCED) after batch alumina extraction. To confirm coffee-related chromatographic peaks represented catechols, plasma was incubated with catechol-O-methyltransferase and S-adenosylmethionine before the alumina extraction; reductions in peak heights would identify catechols. METHODS: Ten healthy volunteers drank 2 cups each of caffeinated and decaffeinated coffee on separate days after fasting overnight. With subjects supine, blood was drawn through an intravenous catheter up to 240 min after coffee ingestion and the plasma assayed by alumina extraction followed by LCED. RESULTS: Within 15 min of drinking coffee of either type, >20 additional peaks were noted in chromatographs from the alumina eluates. Most of the coffee-related peaks corresponded to free catechols. Plasma levels of the catecholamines epinephrine and dopamine increased with both caffeinated and decaffeinated coffee. Levels of other endogenous catechols were unaffected. Plasma DHCA increased bi-phasically, in contrast with other coffee-related free catechols. INTERPRETATION: Drinking coffee-whether caffeinated or decaffeinated-results in the rapid appearance of numerous free catechols in the plasma. These might affect the disposition of circulating catecholamines. The bi-phasic increase in plasma DHCA is consistent with production by gut bacteria.


Assuntos
Cafeína/análise , Catecóis/sangue , Café/metabolismo , Adulto , Ácidos Cafeicos/sangue , Cafeína/metabolismo , Café/química , Feminino , Humanos , Masculino , Plasma/química , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA