Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39273071

RESUMO

Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder caused by mutations in the homogentisate 1,2-dioxygenase (HGD) gene, leading to the accumulation of homogentisic acid (HGA), causing severe inflammatory conditions. Recently, the presence of serum amyloid A (SAA) has been reported in AKU tissues, classifying AKU as novel secondary amyloidosis; AA amyloidosis is characterized by the extracellular tissue deposition of fibrils composed of fragments of SAA. AA amyloidosis may complicate several chronic inflammatory conditions, like rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, chronic infections, neoplasms, etc. Treatments of AA amyloidosis relieve inflammatory disorders by reducing SAA concentrations; however, no definitive therapy is currently available. SAA regulation is a crucial step to improve AA secondary amyloidosis treatments. Here, applying a comprehensive in vitro and in silico approach, we provided evidence that HGA is a disruptor modulator of SAA, able to enhance its polymerization, fibril formation, and aggregation upon SAA/SAP colocalization. In silico studies deeply dissected the SAA misfolding molecular pathway and SAA/HGA binding, suggesting novel molecular insights about it. Our results could represent an important starting point for identifying novel therapeutic strategies in AKU and AA secondary amyloidosis-related diseases.


Assuntos
Alcaptonúria , Ácido Homogentísico , Proteína Amiloide A Sérica , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Humanos , Ácido Homogentísico/metabolismo , Agregados Proteicos , Amiloidose/metabolismo , Amiloidose/patologia , Amiloide/metabolismo , Modelos Biológicos , Homogentisato 1,2-Dioxigenase/metabolismo , Homogentisato 1,2-Dioxigenase/genética
2.
Life (Basel) ; 14(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38929746

RESUMO

The concept of a "circular bioeconomy" holds great promise for the health, cosmetic, and nutrition sectors by re-using Castanea sativa (Mill.) by-products. This sustainable resource is rich in bioactive secondary metabolites with antioxidant and anti-inflammatory properties. By transforming these by-products into high-value products for human health, we can promote sustainable economic growth and reduce the environmental impact of traditional waste disposal, adding value to previously underutilized resources. In the present study, we investigated the antioxidant capacity, phytochemical composition, and in vitro antioxidant and anti-inflammatory activity of C. sativa burr (CSB) aqueous extract. The spectrophotometric study revealed high total phenolic content (TPC) values with significant antioxidant and anti-radical properties. Using UPLC-MS/MS techniques, the phytochemical investigation identified 56 metabolites, confirming the presence of phenolic compounds in CSBs. In addition, CSBs significantly downregulated pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophage cells without significant cell toxicity. Lastly, in silico studies pinpointed three kinases from RAW 264.7 cells as binding partners with ellagic acid, the predominant compound found in our extract. These findings strongly advocate for the recycling and valorization of C. sativa by-products, challenging their conventional classification as mere "waste".

3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473765

RESUMO

Currently, many environmental and energy-related problems are threatening the future of our planet. In October 2022, the Worldmeter recorded the world population as 7.9 billion people, estimating that there will be an increase of 2 billion by 2057. The rapid growth of the population and the continuous increase in needs are causing worrying conditions, such as pollution, climate change, global warming, waste disposal, and natural resource reduction. Looking for novel and innovative methods to overcome these global troubles is a must for our common welfare. The circular bioeconomy represents a promising strategy to alleviate the current conditions using biomass-like natural wastes to replace commercial products that have a negative effect on our ecological footprint. Applying the circular bioeconomy concept, we propose an integrated in silico and in vitro approach to identify antioxidant bioactive compounds extracted from chestnut burrs (an agroforest waste) and their potential biological targets. Our study provides a novel and robust strategy developed within the circular bioeconomy concept aimed at target and drug discovery for a wide range of diseases. Our study could open new frontiers in the circular bioeconomy related to target and drug discovery, offering new ideas for sustainable scientific research aimed at identifying novel therapeutical strategies.


Assuntos
Antioxidantes , Mudança Climática , Humanos , Biomassa , Descoberta de Drogas , Poluição Ambiental
4.
Nat Rev Dis Primers ; 10(1): 16, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453957

RESUMO

Alkaptonuria is a rare inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase activity. The consequent homogentisic acid (HGA) accumulation in body fluids and tissues leads to a multisystemic and highly debilitating disease whose main features are dark urine, ochronosis (HGA-derived pigment in collagen-rich connective tissues), and a painful and severe form of osteoarthropathy. Other clinical manifestations are extremely variable and include kidney and prostate stones, aortic stenosis, bone fractures, and tendon, ligament and/or muscle ruptures. As an autosomal recessive disorder, alkaptonuria affects men and women equally. Debilitating symptoms appear around the third decade of life, but a proper and timely diagnosis is often delayed due to their non-specific nature and a lack of knowledge among physicians. In later stages, patients' quality of life might be seriously compromised and further complicated by comorbidities. Thus, appropriate management of alkaptonuria requires a multidisciplinary approach, and periodic clinical evaluation is advised to monitor disease progression, complications and/or comorbidities, and to enable prompt intervention. Treatment options are patient-tailored and include a combination of medications, physical therapy and surgery. Current basic and clinical research focuses on improving patient management and developing innovative therapies and implementing precision medicine strategies.


Assuntos
Alcaptonúria , Ocronose , Masculino , Humanos , Feminino , Alcaptonúria/complicações , Alcaptonúria/diagnóstico , Alcaptonúria/terapia , Qualidade de Vida , Ocronose/complicações , Ocronose/diagnóstico , Rim/metabolismo , Ácido Homogentísico/metabolismo
5.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429096

RESUMO

Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis.


Assuntos
Alcaptonúria , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/complicações , Alcaptonúria/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Produtos da Oxidação Avançada de Proteínas/uso terapêutico , Qualidade de Vida , Biomarcadores/metabolismo , Proteína Amiloide A Sérica/metabolismo , Inflamação/metabolismo , Estresse Oxidativo
6.
Mar Drugs ; 17(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443264

RESUMO

Marine algae have gained much importance in the development of nutraceutical products due to their high content of bioactive compounds. In this work, we investigated the activity of Padina pavonica with the aim to demonstrate the pro-osteogenic ability of its extract on human primary osteoblast (HOb). Our data indicated that the acetonic extract of P. pavonica (EPP) is a safe product as it did not show any effect on osteoblast viability. At the same time, EPP showed to possess a beneficial effect on HOb functionality, triggering their differentiation and mineralization abilities. In particular EPP enhanced the expression of the earlier differentiation stage markers: a 5.4-fold increase in collagen type I alpha 1 chain (COL1A1), and a 2.3-fold increase in alkaline phosphatase (ALPL), as well as those involved in the late differentiation stage: a 3.7-fold increase in osteocalcin (BGLAP) expression and a 2.8-fold in osteoprotegerin (TNFRSF11B). These findings were corroborated by the enhancement in ALPL enzymatic activity (1.7-fold increase) and by the reduction of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) ratio (0.6-fold decrease). Moreover, EPP demonstrated the capacity to enhance the bone nodules formation by 3.2-fold in 4 weeks treated HOb. Therefore, EPP showed a significant capability of promoting osteoblast phenotype. Given its positive effect on bone homeostasis, EPP could be used as a useful nutraceutical product that, in addition to a healthy lifestyle and diet, can be able to contrast and prevent bone diseases, especially those connected with ageing, such as osteoporosis (OP).


Assuntos
Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Phaeophyceae/química , Fosfatase Alcalina/metabolismo , Sobrevivência Celular , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Humanos , Osteocalcina/metabolismo , Osteoprotegerina/metabolismo , Cultura Primária de Células , Ligante RANK/metabolismo
7.
J Cell Physiol ; 233(6): 4961-4971, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29215700

RESUMO

Osteosarcoma (OS) is an ultra-rare highly malignant tumor of the skeletal system affecting mainly children and young adults and it is characterized by an extremely aggressive clinical course. OS patients are currently treated with chemotherapy and complete surgical resection of cancer tissue. However, resistance to chemotherapy and the recurrence of disease, as pulmonary metastasis, remain the two greatest challenges in the management, and treatment of this tumor. For these reasons, it is of primary interest to find alternative therapeutic strategies for OS. Dysregulated Hedgehog signalling is involved in the development of various types of cancers including OS. It has also been implicated in tumor/stromal interaction and cancer stem cell biology, and therefore presents a novel therapeutic strategy for cancer treatment. In our work, we tested the activity of five potent Smoothened (SMO) inhibitors, four acylguanidine and one acylthiourea derivatives, against an OS cell line. We found that almost all our compounds were able to inhibit OS cells proliferation and to reduce Gli1 protein levels. Our results also indicated that SMO inhibition in OS cells by such compounds, induces apoptosis with a nanomolar potency. These findings suggest that inactivation of SMO may be a useful approach to the treatment of patients with OS.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Guanidinas/farmacologia , Osteossarcoma/tratamento farmacológico , Receptor Smoothened/antagonistas & inibidores , Tioureia/farmacologia , Acilação , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/metabolismo , Tioureia/análogos & derivados , Células Tumorais Cultivadas , Proteína GLI1 em Dedos de Zinco/metabolismo
8.
Biofactors ; 43(6): 801-811, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28786551

RESUMO

The therapeutic treatment of osteosarcoma (OS), a rare malignant teenage cancer of the skeletal system, still represents a great challenge as patient survival after conventional protocol chemotherapy treatment has not improved in the last four decades leaving poor patient prognoses. Therefore, many efforts have been done to find increasingly reliable OS cell models and to identify "druggable" targets in OS, in order to identify novel effective therapeutic approaches and treatment strategies. In this contest, the more successful use of patient-derived cell cultures in respect to human commercial lines and findings of Src kinase deregulation in cancer, prompted us to study for the first time the activation state of Src and the potential activity of our Src inhibitor SI-83 in a number of chemo-naïve patient-derived primary OS cells. We here demonstrate that Src is hyperactivated in OS cells in respect to the nonmalignant counterpart and that SI-83 is able to strongly decrease cell viability, proliferation, Src416 phosphorylation, and cell migration. © 2017 BioFactors, 43(6):801-811, 2017.


Assuntos
Regulação Neoplásica da Expressão Gênica , Osteoblastos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinases da Família src/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Humanos , Osteoblastos/enzimologia , Osteoblastos/patologia , Osteossarcoma/enzimologia , Osteossarcoma/genética , Osteossarcoma/patologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Transdução de Sinais , Quinases da Família src/genética , Quinases da Família src/metabolismo
9.
Calcif Tissue Int ; 101(1): 50-64, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28271171

RESUMO

Alkaptonuria (AKU) is a hereditary disorder that results from altered structure and function of homogentisate 1,2 dioxygenase (HGD). This enzyme, predominantly produced by liver and kidney, is responsible for the breakdown of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway. A deficient HGD activity causes HGA levels to rise systemically. The disease is clinically characterized by homogentisic aciduria, bluish-black discoloration of connective tissues (ochronosis) and joint arthropathy. Additional manifestations are cardiovascular abnormalities, renal, urethral and prostate calculi and scleral and ear involvement. While the radiological aspect of ochronotic spondyloarthropathy is known, there are only few data regarding an exhaustive ultrastructural and histologic study of different tissues in AKU. Moreover, an in-depth analysis of tissues from patients of different ages, having varied symptoms, is currently lacking. A complete microscopic and ultrastructural analysis of different AKU tissues, coming from six differently aged patients, is here presented thus significantly contributing to a more comprehensive knowledge of this ultra-rare pathology.


Assuntos
Alcaptonúria/patologia , Adulto , Idoso , Alcaptonúria/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ocronose/etiologia , Ocronose/patologia
10.
J Cell Physiol ; 232(7): 1728-1738, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27454006

RESUMO

Alkaptonuria (AKU) is an ultra-rare autosomal genetic disorder caused by a defect in the activity of the enzyme homogentisate 1,2-dioxygenase (HGD) that leads to the accumulation of homogentisic acid (HGA) and its oxidized product, benzoquinone acetic acid (BQA), in the connective tissues causing a pigmentation called "ochronosis." The consequent progressive formation of ochronotic aggregates generate a severe condition of oxidative stress and inflammation in all the affected areas. Experimental evidences have also proved the presence of serum amyloid A (SAA) in several AKU tissues and it allowed classifying AKU as a secondary amyloidosis. Although AKU is a multisystemic disease, the most affected system is the osteoarticular one and articular cartilage is the most damaged tissue. In this work, we have analyzed for the first time the cytoskeleton of AKU chondrocytes by means of immunofluorescence staining. We have shown the presence of SAA within AKU chondrocytes and finally we have demonstrated the co-localization of SAA with three cytoskeletal proteins: actin, vimentin, and ß-tubulin. Furthermore, in order to observe the ultrastructural features of AKU chondrocytes we have performed TEM analysis, focusing on the Golgi apparatus structure and, to demonstrate that pigmented areas in AKU cartilage are correspondent to areas of oxidation, 4-HNE presence has been evaluated by means of immunofluorescence. J. Cell. Physiol. 232: 1728-1738, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Alcaptonúria/patologia , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Adulto , Idoso , Aldeídos/metabolismo , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Estudos de Casos e Controles , Condrócitos/ultraestrutura , Citoesqueleto/ultraestrutura , Feminino , Imunofluorescência , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Peroxidação de Lipídeos , Masculino , Pessoa de Meia-Idade , Pigmentos Biológicos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
11.
J Cell Physiol ; 232(11): 3103-3111, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28019670

RESUMO

Alkaptonuria (AKU) is an ultra-rare genetic disease, in which the accumulation of a toxic metabolite, homogentisic acid (HGA) leads to the systemic development of ochronotic aggregates. These aggregates cause severe complications mainly at the level of joints with extensive degradation of the articular cartilage. Primary cilia have been demonstrated to play an essential role in development and the maintenance of articular cartilage homeostasis, through their involvement in mechanosignaling and Hedgehog signaling pathways. Hedgehog signaling has been demonstrated to be activated in osteoarthritis (OA) and to drive cartilage degeneration in vivo. The numerous similarities between OA and AKU suggest that primary cilia Hedgehog signaling may also be altered in AKU. Thus, we characterized an AKU cellular model in which healthy chondrocytes were treated with HGA (66 µM) to replicate AKU cartilage pathology. We investigated the degree of activation of the Hedgehog signaling pathway and how treatment with inhibitors of the receptor Smoothened (Smo) influenced Hedgehog activation and primary cilia structure. The results obtained in this work provide a further step in the comprehension of the pathophysiological features of AKU, suggesting a potential therapeutic approach to modulate AKU cartilage degradation processes through manipulation of the Hedgehog pathway.


Assuntos
Alcaptonúria/induzido quimicamente , Anilidas/farmacologia , Condrócitos/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Ácido Homogentísico/toxicidade , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/antagonistas & inibidores , Alcaloides de Veratrum/farmacologia , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/patologia , Relação Dose-Resposta a Droga , Humanos , Hiperpigmentação/induzido quimicamente , Hiperpigmentação/metabolismo , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
12.
J Cell Physiol ; 230(11): 2718-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25809010

RESUMO

Osteosarcoma (OS) is a primary highly malignant tumor of bone, affecting predominately adolescents and young adults between 10 and 20 years of age. OS is characterized by an extremely aggressive clinical course, with a rapid development of metastasis to the lung and distant bones.


Assuntos
Linhagem Celular Tumoral , Osteossarcoma/patologia , Cultura Primária de Células , Adolescente , Feminino , Humanos , Itália , Masculino , Osteossarcoma/tratamento farmacológico , Adulto Jovem
13.
J Inherit Metab Dis ; 38(5): 807-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25762405

RESUMO

Alkaptonuria is an ultra-rare autosomal recessive disease developed from the lack of homogentisate 1,2-dioxygenase (HGD) activity, causing an accumulation in connective tissues of homogentisic acid (HGA) and its oxidized derivatives in polymerized form. The deposition of ochronotic pigment has been so far attributed to homogentisic acid produced by the liver, circulating in the blood, and accumulating locally. In the present paper, we report the expression of HGD in the brain. Mouse and human brain tissues were positively tested for HGD gene expression by western blotting. Furthermore, HGD expression was confirmed in human neuronal cells that also revealed the presence of six HGD molecular species. Moreover, once cultured in HGA excess, human neuronal cells produced ochronotic pigment and amyloid. Our findings indicate that alkaptonuric brain cells produce the ochronotic pigment in loco and this may contribute to induction of neurological complications.


Assuntos
Alcaptonúria/metabolismo , Encéfalo/metabolismo , Homogentisato 1,2-Dioxigenase/metabolismo , Alcaptonúria/patologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Western Blotting , Encéfalo/patologia , Linhagem Celular Tumoral , Ácido Homogentísico/metabolismo , Humanos , Masculino , Camundongos , Ocronose/metabolismo , Ocronose/patologia
14.
Mediators Inflamm ; 2014: 258471, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24876668

RESUMO

BACKGROUND: Alkaptonuria, a rare autosomal recessive metabolic disorder caused by deficiency in homogentisate 1,2-dioxygenase activity, leads to accumulation of oxidised homogentisic acid in cartilage and collagenous structures present in all organs and tissues, especially joints and heart, causing a pigmentation called ochronosis. A secondary amyloidosis is associated with AKU. Here we report a study of an aortic valve from an AKU patient. RESULTS: Congo Red birefringence, Th-T fluorescence, and biochemical assays demonstrated the presence of SAA-amyloid deposits in AKU stenotic aortic valve. Light and electron microscopy assessed the colocalization of ochronotic pigment and SAA-amyloid, the presence of calcified areas in the valve. Immunofluorescence detected lipid peroxidation of the tissue and lymphocyte/macrophage infiltration causing inflammation. High SAA plasma levels and proinflammatory cytokines levels comparable to those from rheumatoid arthritis patients were found in AKU patient. CONCLUSIONS: SAA-amyloidosis was present in the aortic valve from an AKU patient and colocalized with ochronotic pigment as well as with tissue calcification, lipid oxidation, macrophages infiltration, cell death, and tissue degeneration. A local HGD expression in human cardiac tissue has also been ascertained suggesting a consequent local production of ochronotic pigment in AKU heart.


Assuntos
Alcaptonúria/imunologia , Alcaptonúria/metabolismo , Amiloidose/fisiopatologia , Inflamação/fisiopatologia , Estresse Oxidativo , Idoso , Valva Aórtica/metabolismo , Artrite Reumatoide/sangue , Feminino , Humanos , Peroxidação de Lipídeos , Linfócitos/citologia , Macrófagos/citologia , Miocárdio/metabolismo , Ocronose/metabolismo , Proteína Amiloide A Sérica/metabolismo
15.
Expert Rev Proteomics ; 11(3): 331-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24654989

RESUMO

Osteosarcoma (OS) is the most common primary malignant tumor of bone and the third most common cancer in childhood and adolescence. Nowadays, early diagnosis, drug resistance and recurrence of the disease represent the major challenges in OS treatment. Post-genomics, and in particular proteomic technologies, offer an invaluable opportunity to address the level of biological complexity expressed by OS. Although the main goal of OS oncoproteomics is focused on diagnostic and prognostic biomarker discovery, in this review we describe and discuss global protein profiling approaches to other aspects of OS biology and pathophysiology, or to investigate the mechanism of action of chemotherapeutics. In addition, we present proteomic analyses carried out on OS cell lines as in vitro models for studying osteoblastic cell biology and the attractive opportunity offered by proteomics of OS cancer stem cells.


Assuntos
Neoplasias Ósseas/metabolismo , Osteossarcoma/metabolismo , Proteoma/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/terapia
16.
Mol Biosyst ; 10(6): 1305-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615350

RESUMO

Osteosarcoma (OS) is a highly malignant bone tumour, affecting mainly children and young adults between 10 and 20 years of age. It represents the most frequent primitive malignant tumour of the skeletal system and is characterized by an extremely aggressive clinical course, with rapid development of lung metastases. In the last few years, targeting Src in the treatment of OS has become one of the major challenges in the development of new drugs, since an elevated Src kinase activity has been associated with the development and the maintenance of the OS malignant phenotype. Recently, SI-83, a novel pyrazolo[3,4-d]pyrimidine derivate Src inhibitor, was selected as a promising OS therapeutic drug because of its elevated anti-tumour effects toward human OS. In the present study, gel-based proteomics and phosphoproteomics revealed significant changes in proteins involved in many cancer related processes. We got insight into SI-83 proapoptotic and antiproliferative properties (overrepresentation of GRIA1, GRP78, and CALR and underrepresentation of NPM1, RCN, and P4HB). Nevertheless, the most significant findings of our work are the SI-83 induced dephosphorylation of ARPC5L, a subunit of the actin related Arp2/3 complex, and the decrease of other cytoskeleton proteins. These data, together with a dramatic impairment of SaOS-2 cell migration and adhesion, suggest that SI-83 may have antimetastatic features that enhance its use as a potent OS chemotherapeutic drug.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Osteossarcoma/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Humanos , Nucleofosmina , Osteossarcoma/patologia , Fosforilação , Proteômica
18.
Rheumatology (Oxford) ; 52(9): 1667-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23704321

RESUMO

OBJECTIVE: Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. METHODS: We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. RESULTS: Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. CONCLUSION: All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis.


Assuntos
Alcaptonúria/metabolismo , Antioxidantes/farmacologia , Condrócitos/efeitos dos fármacos , Citocinas/metabolismo , Proteína Amiloide A Sérica/metabolismo , Acetilcisteína/farmacologia , Ácido Ascórbico/farmacologia , Linhagem Celular , Condrócitos/metabolismo , Humanos , Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Ácido Fítico/farmacologia , Taurina/farmacologia , Ácido Tióctico/farmacologia
19.
Fertil Steril ; 95(7): 2303-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474128

RESUMO

OBJECTIVE: To investigate the occurrence of ghrelin and obestatin in human semen. DESIGN: Prospective study. SETTING: University, center for research and therapy of male infertility. PATIENT(S): 112 consecutively selected men. INTERVENTION(S): Family history, clinical and physical examination, radioimmunoassay for ghrelin and obestatin determinations, semen analysis, annexinV/propidium iodide assay. MAIN OUTCOME MEASURE(S): Ghrelin and obestatin detected in the semen and relationships with semen parameters and conditions influencing semen quality (smoking, varicocele, ex varicocele, leukocytospermia). RESULT(S): The levels of both peptides in semen were higher versus serum. Linear correlations between ghrelin and obestatin levels in serum and in semen were observed. Serum ghrelin levels were negatively correlated with the men's ages. Semen obestatin levels were positively correlated with sperm concentration and motility. Obestatin levels were decreased in the semen of smokers and in the presence of leukocytospermia. CONCLUSION(S): This is the first study on the presence of obestatin in human semen and its relationship with sperm concentration and motility, suggesting a possible role of the peptide in controlling cell proliferation and survival. Further investigations are required to explore the exact role of obestatin and ghrelin in human semen.


Assuntos
Grelina/análise , Infertilidade Masculina/metabolismo , Sêmen/química , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Adulto , Biomarcadores/análise , Distribuição de Qui-Quadrado , Grelina/sangue , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/patologia , Itália , Masculino , Estudos Prospectivos , Radioimunoensaio , Medição de Risco , Fatores de Risco , Universidades
20.
Fertil Steril ; 95(5): 1787.e19-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21144504

RESUMO

OBJECTIVE: To characterize the association of two systematic sperm defects. DESIGN: Case report. SETTING: University, Interdepartmental Centre for Research and Therapy of Male Infertility. PATIENT(S): Patient 1, 42 years old, and patient 2, 38 years old, both with severe asthenozoospermia. INTERVENTION(S): Family history, physical examination, hormonal analysis, microbial assays, semen analysis, transmission and scanning electron microscopy, immunocytochemistry for tubulin, and fluorescence in situ hybridization (FISH) for chromosomes 18, X, and Y. MAIN OUTCOME MEASURE(S): Admixture of dysplasia of the fibrous sheath (DFS) and head-tail misalignment up to acephalic sperm detected by microscopic methods. RESULT(S): In both patients, DFS was present in incomplete form and was associated with acephalic sperm and abnormal head-tail attachment. In patient 2, spermatozoa were also affected by necrosis that may cause fragmentation leading to short flagella; submicroscopic examination allowed defining only the origin of these "stumpy" tails. Immunofluorescence confirmed the sperm alterations. FISH revealed an altered frequency of diploidy and disomy in patient 2 and a slight increase in diploidy in patient 1. CONCLUSION(S): The importance of ultrastructural sperm evaluation for correct identification of sperm pathologies is evident, particularly regarding assisted reproduction technology and genetic risk assessment.


Assuntos
Astenozoospermia/patologia , Cabeça do Espermatozoide/patologia , Cauda do Espermatozoide/patologia , Espermatozoides/anormalidades , Adulto , Astenozoospermia/diagnóstico , Humanos , Masculino , Análise do Sêmen , Cabeça do Espermatozoide/ultraestrutura , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/patologia , Espermatozoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA