Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Metab ; 33(1): 160-173.e6, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406400

RESUMO

CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-methylated to CD147-K234me2 by lysine methyltransferase 5A (KMT5A). The increase in KMT5A expression boosts the levels of CD147-K234me2, further promoting the interaction between CD147 and monocarboxylate transporter 4 (MCT4), which enhances the translocation of MCT4 from the cytoplasm to the membrane. Overexpression of CD147-K234me2 and KMT5A enhances glycolysis and lactate export in NSCLC cells. Clinical analysis shows that high CD147-K234me2 expression is significantly related to cancer progression and overall survival, and has prognostic significance in individuals with NSCLC, especially for those in the early stages. Our findings indicate that CD147-K234me2 plays a critical role in cancer metabolism, and it can be a highly promising therapeutic target for NSCLC.


Assuntos
Basigina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ácido Láctico/metabolismo , Neoplasias Pulmonares/metabolismo , Oligopeptídeos/metabolismo , Animais , Linhagem Celular , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
3.
Cell Mol Immunol ; 18(1): 171-181, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31900457

RESUMO

Thymic involution during aging is a major cause of decreased T-cell production and reduced immunity. Here, we show that the loss of CD147 on T cells prevents thymic senescence, resulting in slowed shrinkage of the thymus with age and increased production of naive T cells. This phenotype is the result of slowing of the epithelial-mesenchymal transition (EMT) process in thymic epithelial cells (TECs), which eventually leads to reduced adipocyte accumulation. In an in vitro coculture system, we found that TGFß is an important factor in the EMT process in TECs and that it can reduce the expression of E-cadherin through p-Smad2/FoxC2 signaling. Moreover, CD147 on T cells can accelerate the decline in E-cadherin expression by interacting with Annexin A2 on TECs. In the presence of TGFß, Annexin A2 and E-cadherin colocalize on TECs. However, CD147 on T cells competitively binds to Annexin A2 on TECs, leading to the isolation of E-cadherin. Then, the isolated E-cadherin is easily phosphorylated by phosphorylated Src kinase, the phosphorylation of which was induced by TGFß, and finally, p-E-cadherin is degraded. Thus, in the thymus, the interaction between T cells and TECs contributes to thymic involution with age. In this study, we illuminate the mechanism underlying the triggering of the EMT process in TECs and show that inhibiting TGFß and/or CD147 may serve as a strategy to hinder age-related thymic involution.


Assuntos
Envelhecimento , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal , Linfócitos T/metabolismo , Timo/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/fisiologia , Transdução de Sinais , Linfócitos T/imunologia , Fator de Crescimento Transformador beta/genética
4.
EBioMedicine ; 20: 98-108, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28571672

RESUMO

CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αß T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy.


Assuntos
Basigina/genética , Linhagem da Célula/genética , Reprogramação Celular/genética , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Animais , Feminino , Deleção de Genes , Imunomodulação , Imunoterapia , Células Matadoras Naturais/imunologia , Melanoma Experimental , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Subpopulações de Linfócitos T/imunologia , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Via de Sinalização Wnt
5.
Oncotarget ; 7(8): 9429-47, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26882566

RESUMO

CD147, a type I transmembrane glycoprotein, is highly expressed in various cancer types and plays important roles in tumor progression, especially by promoting the motility and invasion of hepatocellular carcinoma (HCC) cells. These crucial roles make CD147 an attractive target for therapeutic intervention in HCC, but no small-molecule inhibitors of CD147 have been developed to date. To identify a candidate inhibitor, we used a pharmacophore model derived from the structure of CD147 to virtually screen over 300,000 compounds. The 100 highest-ranked compounds were subjected to biological assays, and the most potent one, dubbed AC-73 (ID number: AN-465/42834501), was studied further. We confirmed that AC-73 targeted CD147 and further demonstrated it can specifically disrupt CD147 dimerization. Moreover, molecular docking and mutagenesis experiments showed that the possible binding sites of AC-73 on CD147 included Glu64 and Glu73 in the N-terminal IgC2 domain, which two residues are located in the dimer interface of CD147. Functional assays revealed that AC-73 inhibited the motility and invasion of typical HCC cells, but not HCC cells that lacked the CD147 gene, demonstrating on-target action. Further, AC-73 reduced HCC metastasis by suppressing matrix metalloproteinase (MMP)-2 via down-regulation of the CD147/ERK1/2/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, AC-73 attenuated progression in an orthotopic nude mouse model of liver metastasis, suggesting that AC-73 or its derivatives have potential for use in HCC intervention. We conclude that the novel small-molecule inhibitor AC-73 inhibits HCC mobility and invasion, probably by disrupting CD147 dimerization and thereby mainly suppressing the CD147/ERK1/2/STAT3/MMP-2 pathways, which are crucial for cancer progression.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Basigina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Basigina/efeitos dos fármacos , Sítios de Ligação/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Invasividade Neoplásica/patologia , Fator de Transcrição STAT3/metabolismo
6.
Biochim Biophys Acta ; 1842(9): 1770-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24932516

RESUMO

Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1ß, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis.


Assuntos
Basigina/metabolismo , Diferenciação Celular , Macrófagos/metabolismo , Fibrose Pulmonar/patologia , Células Th17/imunologia , Animais , Antibióticos Antineoplásicos/toxicidade , Basigina/química , Basigina/genética , Bleomicina/toxicidade , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Técnicas Imunoenzimáticas , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA