Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 359-382, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36100222

RESUMO

The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico
2.
Front Endocrinol (Lausanne) ; 13: 1029297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387920

RESUMO

Differential diagnosis of hypoglycaemia can at times be challenging for patients who appear to be well. Here we identify the case of a 66-year-old Chinese man presenting with recurrent episodes of fasting hypoglycaemia and confusion without any other manifestations. He had no personal or family history of diabetes, nor was he on any hypoglycaemic drugs. The fasting insulin levels were elevated while the C-peptide and pro-insulin levels were slightly low or normal. Antibodies against insulin were negative and levels of insulin-like growth factors were normal. A series of imaging diagnosis excluded the presence of insulinoma or ectopic insulin-secreting neuroendocrine tumor. Ultimately, insulin receptor autoantibodies (IRAb) were detected by both immunoprecipitation assay and enzyme-linked immunosorbent assay (ELISA) developed in house. In a cell study, the immunoglobulins isolated from this patient exerted insulin-like effects on stimulation of post-insulin receptor signaling and glucose uptake as well as inhibited 125I-insulin binding with insulin receptors. Collectively, this patient was diagnosed with IRAb-induced autoimmune hypoglycaemia. Although this patient had no obvious immune disorders, several autoantibodies were identified in his plasma samples, suggesting the patient might have mild aberrant autoimmunity and therefore generated IRAb. IRAb-related disease is uncommon and possibly underdiagnosed or missed due to the lack of simple detection methods for IRAb. Our in-house user-friendly ELISA kit provides a valuable tool for diagnosis of this disease.


Assuntos
Hipoglicemia , Neoplasias Pancreáticas , Masculino , Humanos , Idoso , Receptor de Insulina , Autoanticorpos , Hipoglicemia/diagnóstico , Hipoglicemia/etiologia , Insulina
3.
Circulation ; 146(20): 1537-1557, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36134579

RESUMO

BACKGROUND: Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms. METHODS: The global or hepatocyte-specific FGF21 knockout mice, cardiomyocyte-selective ß-klotho (the obligatory co-receptor for FGF21) knockout mice, and their wild-type littermates were subjected to high-fat diet feeding and injection of streptozotocin to induce DCM, followed by a 6-week exercise intervention and assessment of cardiac functions. Cardiac mitochondrial structure and function were assessed by electron microscopy, enzymatic assays, and measurements of fatty acid oxidation and ATP production. Human induced pluripotent stem cell-derived cardiomyocytes were used to investigate the receptor and postreceptor signaling pathways conferring the protective effects of FGF21 against toxic lipids-induced mitochondrial dysfunction. RESULTS: Treadmill exercise markedly induced cardiac expression of ß-klotho and significantly attenuated diabetes-induced cardiac dysfunction in wild-type mice, accompanied by reduced mitochondrial damage and increased activities of mitochondrial enzymes in hearts. However, such cardioprotective benefits of exercise were largely abrogated in mice with global or hepatocyte-selective ablation of FGF21, or cardiomyocyte-specific deletion of ß-klotho. Mechanistically, exercise enhanced the cardiac actions of FGF21 to induce the expression of the mitochondrial deacetylase SIRT3 by AMPK-evoked phosphorylation of FOXO3, thereby reversing diabetes-induced hyperacetylation and functional impairments of a cluster of mitochondrial enzymes. FGF21 prevented toxic lipids-induced mitochondrial dysfunction and oxidative stress by induction of the AMPK/FOXO3/SIRT3 signaling axis in human induced pluripotent stem cell-derived cardiomyocytes. Adeno-associated virus-mediated restoration of cardiac SIRT3 expression was sufficient to restore the responsiveness of diabetic FGF21 knockout mice to exercise in amelioration of mitochondrial dysfunction and DCM. CONCLUSIONS: The FGF21-SIRT3 axis mediates the protective effects of exercise against DCM by preserving mitochondrial integrity and represents a potential therapeutic target for DCM. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03240978.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Células-Tronco Pluripotentes Induzidas , Sirtuína 3 , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipídeos , Camundongos Knockout , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Sirtuína 3/metabolismo
4.
Nat Metab ; 4(5): 608-626, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551509

RESUMO

Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of type-2 diabetes. However, cellular signaling machineries that control GSIS remain incompletely understood. Here, we report that ß-klotho (KLB), a single-pass transmembrane protein known as a co-receptor for fibroblast growth factor 21 (FGF21), fine tunes GSIS via modulation of glycolysis in pancreatic ß-cells independent of the actions of FGF21. ß-cell-specific deletion of Klb but not Fgf21 deletion causes defective GSIS and glucose intolerance in mice and defective GSIS in islets of type-2 diabetic mice is mitigated by adenovirus-mediated restoration of KLB. Mechanistically, KLB interacts with and stabilizes the cytokine receptor subunit GP130 by blockage of ubiquitin-dependent lysosomal degradation, thereby facilitating interleukin-6-evoked STAT3-HIF1α signaling, which in turn transactivates a cluster of glycolytic genes for adenosine triphosphate production and GSIS. The defective glycolysis and GSIS in Klb-deficient islets are rescued by adenovirus-mediated replenishment of STAT3 or HIF1α. Thus, KLB functions as a key cell-surface regulator of GSIS by coupling the GP130 receptor signaling to glucose catabolism in ß-cells and represents a promising therapeutic target for diabetes.


Assuntos
Diabetes Mellitus Experimental , Glucose , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Glucose/metabolismo , Glicólise , Secreção de Insulina , Camundongos
5.
Cell Metab ; 26(3): 493-508.e4, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28844880

RESUMO

Type 2 cytokines are important signals triggering biogenesis of thermogenic beige adipocytes in white adipose tissue (WAT) during cold acclimation. However, how cold activates type 2 immunity in WAT remains obscure. Here we show that cold-induced type 2 immune responses and beiging in subcutaneous WAT (scWAT) are abrogated in mice with adipose-selective ablation of FGF21 or its co-receptor ß-Klotho, whereas such impairments are reversed by replenishment with chemokine CCL11. Mechanistically, FGF21 acts on adipocytes in an autocrine manner to promote the expression and secretion of CCL11 via activation of ERK1/2, which drives recruitment of eosinophils into scWAT, leading to increases in accumulation of M2 macrophages, and proliferation and commitment of adipocyte precursors into beige adipocytes. These FGF21-elicited type 2 immune responses and beiging are blocked by CCL11 neutralization. Thus, the adipose-derived FGF21-CCL11 axis triggers cold-induced beiging and thermogenesis by coupling sympathetic nervous system to activation of type 2 immunity in scWAT.


Assuntos
Tecido Adiposo Branco/metabolismo , Quimiocina CCL11/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Imunidade , Sistema Nervoso Simpático/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Comunicação Autócrina/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Temperatura Baixa , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/deficiência , Glucuronidase/metabolismo , Imunidade/efeitos dos fármacos , Proteínas Klotho , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Termogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA