Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401649, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38938121

RESUMO

Immune checkpoint blockade (ICB) has significantly improved the prognosis of patients with cancer, although the majority of such patients achieve low response rates; consequently, new therapeutic approaches are urgently needed. The upregulation of sialic acid-containing glycans is a common characteristic of cancer-related glycosylation, which drives disease progression and immune escape via numerous pathways. Herein, the development of self-assembled core-shell nanoscale coordination polymer nanoparticles loaded with a sialyltransferase inhibitor, referred to as NCP-STI which effectively stripped diverse sialoglycans from cancer cells, providing an antibody-independent pattern to disrupt the emerging Siglec-sialic acid glyco-immune checkpoint is reported. Furthermore, NCP-STI inhibits sialylation of the concentrated nucleoside transporter 1 (CNT1), promotes the intracellular accumulation of anticancer agent gemcitabine (Gem), and enhances Gem-induced immunogenic cell death (ICD). As a result, the combination of NCP-STI and Gem (NCP-STI/Gem) evokes a robust antitumor immune response and exhibits superior efficacy in restraining the growth of multiple murine tumors and pulmonary metastasis. Collectively, the findings demonstrate a novel form of small molecule-based chemo-immunotherapy approach which features sialic acids blockade that enables cooperative effects of cancer cell chemosensitivity and antitumor immune responses for cancer treatment.

2.
J Cancer ; 15(9): 2518-2537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577609

RESUMO

Background: The nuclear cap-binding complex (CBC)-dependent translation (CT) is an important initial translation pathway for 5'-cap-dependent translation in normal mammal cells. Eukaryotic translation initiation factor 4A-III (eIF4A3), as an RNA helicase, is recruited to CT complex and enhances CT efficiency through participating in unwinding of secondary structure in the 5' UTR. However, the detailed mechanism for eIF4A3 implicated in unwinding of secondary structure in the 5' UTR in normal mammal cells is still unclear. Specially, we need to investigate whether the kind of mechanism in normal mammal cells extrapolates to cancer cells, e.g. ESCC, and further interrogate whether and how the mechanism triggers malignant phenotype of ESCC, which are important for identifying a potential therapeutic target for patients with ESCC. Methods: Bioinformatics analysis, RNA immunoprecipitation and RNA pulldown assays were performed to detect the interaction of circular RNA circ-231 with eIF4A3. In vitro and in vivo assays were performed to detect biological roles of circ-231 in ESCC. RNA immunoprecipitation, RNA pulldown, mass spectrometry analysis and co-immunoprecipitation assays were used to measure the interaction of circ-231, eIF4A3 and STAU1 in HEK293T and ESCC. In vitro EGFP reporter and 5' UTR of mRNA pulldown assays were performed to probe for the binding of circ-231, eIF4A3 and STAU1 to secondary structure of 5' UTR. Results: RNA immunoprecipitation assays showed that circ-231 interacted with eIF4A3 in HEK293T and ESCC. Further study confirmed that circ-231 orchestrated with eIF4A3 to control protein expression of TPI1 and PRDX6, but not for mRNA transcripts. The in-depth mechanism study uncovered that both circ-231 and eIF4A3 were involved in unwinding of secondary structure in 5' UTR of TPI1 and PRDX6. More importantly, circ-231 promoted the interaction between eIF4A3 and STAU1. Intriguingly, both circ-231 and eIF4A3 were dependent on STAU1 binding to secondary structure in 5' UTR. Biological function assays revealed that circ-231 promoted the migration and proliferation of ESCC via TPI1 and PRDX6. In ESCC, the up-regulated expression of circ-231 was observed and patients with ESCC characterized by higher expression of circ-231 have concurrent lymph node metastasis, compared with control. Conclusions: Our data unravels the detailed mechanism by which STAU1 binds to secondary structure in 5' UTR of mRNAs and recruits eIF4A3 through interacting with circ-231 and thereby eIF4A3 is implicated in unwinding of secondary structure, which is common to HEK293T and ESCC. However, importantly, our data reveals that circ-231 promotes migration and proliferation of ESCC and the up-regulated circ-231 greatly correlates with tumor lymph node metastasis, insinuating that circ-231 could be a therapeutic target and an indicator of risk of lymph node metastasis for patients with ESCC.

3.
J Cell Biochem ; 112(12): 3755-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21826711

RESUMO

To investigate the effects of calorie restriction (CR) on behavioral performance and expression of SIRT1 and SIRT5 in rat cerebral tissues. Beginning at 18 months of age, 60 rats were randomly divided into a CR group (n = 30) and a group that remained fed ad libitum (AL; n = 30). CR rats were restricted to a diet of 60% of their daily food consumption. After 6 months of CR, CR rats displayed a maximum 50% reduction in escape latency (AL 20 ± 0.3 s vs. CR 10 ± 0.2 s) and a 3.2 s decrease in time and distance to target when evaluated in Morris water maze tests. The levels of SIRT1 and SIRT5 protein in cerebral tissues of CR rats were elevated compared to AL rats (P < 0.05). CR retarded declines in cognitive ability and enhanced the expression of both SIRT1 and SIRT5 proteins in the cerebral tissue of CR rats compared with AL rats.


Assuntos
Comportamento Animal , Restrição Calórica , Sirtuína 1/metabolismo , Sirtuínas/metabolismo , Animais , Western Blotting , Imunofluorescência , Masculino , Aprendizagem em Labirinto , Células PC12 , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Neurobiol Aging ; 31(6): 1003-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18755527

RESUMO

Previously we showed that macrophage activation in the eye by intravitreal application of zymosan increased retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve injury. It is known that the intrinsic ability of CNS neurons to survive and to regrow axons after optic nerve injury differs between developing and adult mammals. However, whether aged animals also differ in their ability to survive and regrow injured axons are not known. In this study we investigated whether the abilities of RGCs to survive and to regrow injured axons differed between rats aged 6-8, 60 and over 96 weeks, and whether macrophage responses in the eye were different at different ages. We found that the intrinsic viability of RGCs, as shown in vitro, was reduced in aged rats, but RGC viability after optic nerve injury in vivo was similar among rats of the different ages. The ability of RGCs to regrow injured axons into a peripheral nerve graft also remained similar between young and aged rats. Macrophage activation in the eye was confirmed to be beneficial and provided the basis for zymosan treatment-dependent RGC protection. However, reduced activation of macrophages in zymosan-treated eyes was seen in aged rats. Importantly, this reduced macrophage activation in aged rats led to a decreased level of RGC axonal regeneration when compared with that in young rats of the same treatment. Thus age influences the intrinsic viability of RGCs and the beneficial impact of macrophages on RGC axonal regeneration after optic nerve injury.


Assuntos
Envelhecimento/patologia , Macrófagos/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/fisiologia , Fatores Etários , Análise de Variância , Animais , Contagem de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ectodisplasinas/metabolismo , Técnicas In Vitro , Ativação de Macrófagos/fisiologia , Traumatismos do Nervo Óptico/cirurgia , Nervo Fibular/transplante , Ratos , Ratos Endogâmicos F344 , Retina/citologia , Estilbamidinas/metabolismo , Tubulina (Proteína)/metabolismo , Zimosan/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA